15
Views
17
CrossRef citations to date
0
Altmetric
Article

TRP14 Inhibits Osteoclast Differentiation via Its Catalytic Activity

, , , , &
Pages 3515-3524 | Received 28 Feb 2014, Accepted 30 Jun 2014, Published online: 20 Mar 2023

REFERENCES

  • Takayanagi H, Kim S, Taniguchi T. 2002. Signaling crosstalk between RANKL and interferons in osteoclast differentiation. Arthritis Res. 4(Suppl 3):S227–S232. http://dx.doi.org/10.1186/ar581.
  • Rodan GA, Martin TJ. 2000. Therapeutic approaches to bone diseases. Science 289:1508–1514. http://dx.doi.org/10.1126/science.289.5484.1508.
  • Bar-Shavit Z. 2007. The osteoclast: a multinucleated, hematopoietic-origin, bone-resorbing osteoimmune cell. J. Cell. Biochem. 102:1130–1139. http://dx.doi.org/10.1002/jcb.21553.
  • Wong BR, Rho J, Arron J, Robinson E, Orlinick J, Chao M, Kalachikov S, Cayani E, Bartlett FSIII, Frankel WN, Lee SY, Choi Y. 1997. TRANCE is a novel ligand of the tumor necrosis factor receptor family that activates c-Jun N-terminal kinase in T cells. J. Biol. Chem. 272:25190–25194. http://dx.doi.org/10.1074/jbc.272.40.25190.
  • Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U. S. A. 95:3597–3602. http://dx.doi.org/10.1073/pnas.95.7.3597.
  • Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo J, Delaney J, Boyle WJ. 1998. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176. http://dx.doi.org/10.1016/S0092-8674(00)81569-X.
  • Teitelbaum SL. 2000. Bone resorption by osteoclasts. Science 289:1504–1508. http://dx.doi.org/10.1126/science.289.5484.1504.
  • Boyle WJ, Simonet WS, Lacey DL. 2003. Osteoclast differentiation and activation. Nature 423:337–342. http://dx.doi.org/10.1038/nature01658.
  • Bai S, Zha J, Zhao H, Ross FP, Teitelbaum SL. 2008. Tumor necrosis factor receptor-associated factor 6 is an intranuclear transcriptional coactivator in osteoclasts. J. Biol. Chem. 283:30861–30867. http://dx.doi.org/10.1074/jbc.M802525200.
  • Walsh MC, Kim N, Kadono Y, Rho J, Lee SY, Lorenzo J, Choi Y. 2006. Osteoimmunology: interplay between the immune system and bone metabolism. Annu. Rev. Immunol. 24:33–63. http://dx.doi.org/10.1146/annurev.immunol.24.021605.090646.
  • Takayanagi H. 2007. Osteoimmunology: shared mechanisms and crosstalk between the immune and bone systems. Nat. Rev. Immunol. 7:292–304. http://dx.doi.org/10.1038/nri2062.
  • Ishida N, Hayashi K, Hoshijima M, Ogawa T, Koga S, Miyatake Y, Kumegawa M, Kimura T, Takeya T. 2002. Large scale gene expression analysis of osteoclastogenesis in vitro and elucidation of NFAT2 as a key regulator. J. Biol. Chem. 277:41147–41156. http://dx.doi.org/10.1074/jbc.M205063200.
  • Grigoriadis AE, Wang ZQ, Cecchini MG, Hofstetter W, Felix R, Fleisch HA, Wagner EF. 1994. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266:443–448. http://dx.doi.org/10.1126/science.7939685.
  • Matsuo K, Galson DL, Zhao C, Peng L, Laplace C, Wang KZ, Bachler MA, Amano H, Aburatani H, Ishikawa H, Wagner EF. 2004. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J. Biol. Chem. 279:26475–26480. http://dx.doi.org/10.1074/jbc.M313973200.
  • Asagiri M, Sato K, Usami T, Ochi S, Nishina H, Yoshida H, Morita I, Wagner EF, Mak TW, Serfling E, Takayanagi H. 2005. Autoamplification of NFATc1 expression determines its essential role in bone homeostasis. J. Exp. Med. 202:1261–1269. http://dx.doi.org/10.1084/jem.20051150.
  • Wagner EF, Eferl R. 2005. Fos/AP-1 proteins in bone and the immune system. Immunol. Rev. 208:126–140. http://dx.doi.org/10.1111/j.0105-2896.2005.00332.x.
  • Takayanagi H, Kim S, Koga T, Nishina H, Isshiki M, Yoshida H, Saiura A, Isobe M, Yokochi T, Inoue J, Wagner EF, Mak TW, Kodama T, Taniguchi T. 2002. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell 3:889–901. http://dx.doi.org/10.1016/S1534-5807(02)00369-6.
  • Jeong W, Yoon HW, Lee SR, Rhee SG. 2004. Identification and characterization of TRP14, a thioredoxin-related protein of 14 kDa. New insights into the specificity of thioredoxin function. J. Biol. Chem. 279:3142–3150. http://dx.doi.org/10.1074/jbc.M307932200.
  • Jeong W, Chang TS, Boja ES, Fales HM, Rhee SG. 2004. Roles of TRP14, a thioredoxin-related protein in tumor necrosis factor-alpha signaling pathways. J. Biol. Chem. 279:3151–3159. http://dx.doi.org/10.1074/jbc.M307959200.
  • Jung Y, Kim H, Min SH, Rhee SG, Jeong W. 2008. Dynein light chain LC8 negatively regulates NF-kappaB through the redox-dependent interaction with IkappaBalpha. J. Biol. Chem. 283:23863–23871. http://dx.doi.org/10.1074/jbc.M803072200.
  • Jeong W, Jung Y, Kim H, Park SJ, Rhee SG. 2009. Thioredoxin-related protein 14, a new member of the thioredoxin family with disulfide reductase activity: implication in the redox regulation of TNF-alpha signaling. Free Radic. Biol. Med. 47:1294–1303. http://dx.doi.org/10.1016/j.freeradbiomed.2009.07.021.
  • Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R. 1997. Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat. Med. 3:1285–1289. http://dx.doi.org/10.1038/nm1197-1285.
  • Ruocco MG, Maeda S, Park JM, Lawrence T, Hsu LC, Cao Y, Schett G, Wagner EF, Karin M. 2005. IκκB kinase (IKK)β, but not IKKα, is a critical mediator of osteoclast survival and is required for inflammation-induced bone loss. J. Exp. Med. 201:1677–1687. http://dx.doi.org/10.1084/jem.20042081.
  • Alles N, Soysa NS, Hayashi J, Khan M, Shimoda A, Shimokawa H, Ritzeler O, Akiyoshi K, Aoki K, Ohya K. 2010. Suppression of NF-kappaB increases bone formation and ameliorates osteopenia in ovariectomized mice. Endocrinology 151:4626–4634. http://dx.doi.org/10.1210/en.2010-0399.
  • Lee ZH, Kim HH. 2003. Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem. Biophys. Res. Commun. 305:211–214. http://dx.doi.org/10.1016/S0006-291X(03)00695-8.
  • Bax BE, Alam AS, Banerji B, Bax CM, Bevis PJ, Stevens CR, Moonga BS, Blake DR, Zaidi M. 1992. Stimulation of osteoclastic bone resorption by hydrogen peroxide. Biochem. Biophys. Res. Commun. 183:1153–1158. http://dx.doi.org/10.1016/S0006-291X(05)80311-0.
  • Lean JM, Davies JT, Fuller K, Jagger CJ, Kirstein B, Partington GA, Urry ZL, Chambers TJ. 2003. A crucial role for thiol antioxidants in estrogen-deficiency bone loss. J. Clin. Invest. 112:915–923. http://dx.doi.org/10.1172/JCI18859.
  • Lee NK, Choi YG, Baik JY, Han SY, Jeong DW, Bae YS, Kim N, Lee SY. 2005. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 106:852–859. http://dx.doi.org/10.1182/blood-2004-09-3662.
  • Kim HJ, Chang EJ, Kim HM, Lee SB, Kim HD, Su Kim G, Kim HH. 2006. Antioxidant alpha-lipoic acid inhibits osteoclast differentiation by reducing nuclear factor-kappaB DNA binding and prevents in vivo bone resorption induced by receptor activator of nuclear factor-kappaB ligand and tumor necrosis factor-alpha. Free Radic. Biol. Med. 40:1483–1493. http://dx.doi.org/10.1016/j.freeradbiomed.2005.10.066.
  • Wang Y, Lebowitz D, Sun C, Thang H, Grynpas MD, Glogauer M. 2008. Identifying the relative contributions of Rac1 and Rac2 to osteoclastogenesis. J. Bone Miner. Res. 23:260–270. http://dx.doi.org/10.1359/jbmr.071013.
  • Kim H, Hyeon S, Yang Y, Huh JY, Park DR, Lee H, Seo DH, Kim HS, Lee SY, Jeong W. 2013. Dynein light chain LC8 inhibits osteoclast differentiation and prevents bone loss in mice. J. Immunol. 190:1312–1318. http://dx.doi.org/10.4049/jimmunol.1202525.
  • Brummelkamp TR, Bernards R, Agami R. 2002. A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553. http://dx.doi.org/10.1126/science.1068999.
  • Teitelbaum SL, Ross FP. 2003. Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4:638–649. http://dx.doi.org/10.1038/nrg1122.
  • Ghosh S, Karin M. 2002. Missing pieces in the NF-kappaB puzzle. Cell 109(Suppl):S81–S96. http://dx.doi.org/10.1016/S0092-8674(02)00703-1.
  • Kim HH, Lee DE, Shin JN, Lee YS, Jeon YM, Chung CH, Ni J, Kwon BS, Lee ZH. 1999. Receptor activator of NF-kappaB recruits multiple TRAF family adaptors and activates c-Jun N-terminal kinase. FEBS Lett. 443:297–302. http://dx.doi.org/10.1016/S0014-5793(98)01731-1.
  • Yamashita T, Yao Z, Li F, Zhang Q, Badell IR, Schwarz EM, Takeshita S, Wagner EF, Noda M, Matsuo K, Xing L, Boyce BF. 2007. NF-kappaB p50 and p52 regulate receptor activator of NF-kappaB ligand (RANKL) and tumor necrosis factor-induced osteoclast precursor differentiation by activating c-Fos and NFATc1. J. Biol. Chem. 282:18245–18253. http://dx.doi.org/10.1074/jbc.M610701200.
  • David JP, Sabapathy K, Hoffmann O, Idarraga MH, Wagner EF. 2002. JNK1 modulates osteoclastogenesis through both c-Jun phosphorylation-dependent and -independent mechanisms. J. Cell Sci. 115:4317–4325. http://dx.doi.org/10.1242/jcs.00082.
  • Matsumoto M, Sudo T, Saito T, Osada H, Tsujimoto M. 2000. Involvement of p38 mitogen-activated protein kinase signaling pathway in osteoclastogenesis mediated by receptor activator of NF-kappa B ligand (RANKL). J. Biol. Chem. 275:31155–31161. http://dx.doi.org/10.1074/jbc.M001229200.
  • Lee SE, Woo KM, Kim SY, Kim HM, Kwack K, Lee ZH, Kim HH. 2002. The phosphatidylinositol 3-kinase, p38, and extracellular signal-regulated kinase pathways are involved in osteoclast differentiation. Bone 30:71–77. http://dx.doi.org/10.1016/S8756-3282(01)00657-3.
  • Asagiri M, Takayanagi H. 2007. The molecular understanding of osteoclast differentiation. Bone 40:251–264. http://dx.doi.org/10.1016/j.bone.2006.09.023.
  • Wong BR, Josien R, Lee SY, Vologodskaia M, Steinman RM, Choi Y. 1998. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J. Biol. Chem. 273:28355–28359. http://dx.doi.org/10.1074/jbc.273.43.28355.
  • Armstrong AP, Tometsko ME, Glaccum M, Sutherland CL, Cosman D, Dougall WC. 2002. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J. Biol. Chem. 277:44347–44356. http://dx.doi.org/10.1074/jbc.M202009200.
  • Lomaga MA, Yeh WC, Sarosi I, Duncan GS, Furlonger C, Ho A, Morony S, Capparelli C, Van G, Kaufman S, van der Heiden A, Itie A, Wakeham A, Khoo W, Sasaki T, Cao Z, Penninger JM, Paige CJ, Lacey DL, Dunstan CR, Boyle WJ, Goeddel DV, Mak TW. 1999. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 13:1015–1024. http://dx.doi.org/10.1101/gad.13.8.1015.
  • Dagnell M, Frijhoff J, Pader I, Augsten M, Boivin B, Xu J, Mandal PK, Tonks NK, Hellberg C, Conrad M, Arner ES, Ostman A. 2013. Selective activation of oxidized PTP1B by the thioredoxin system modulates PDGF-beta receptor tyrosine kinase signaling. Proc. Natl. Acad. Sci. U. S. A. 110:13398–13403. http://dx.doi.org/10.1073/pnas.1302891110.
  • Pader I, Sengupta R, Cebula M, Xu J, Lundberg JO, Holmgren A, Johansson K, Arner ES. 2014. Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc. Natl. Acad. Sci. U. S. A. 111:6964–6969. http://dx.doi.org/10.1073/pnas.1317320111.
  • Davis RJ. 2000. Signal transduction by the JNK group of MAP kinases. Cell 103:239–252. http://dx.doi.org/10.1016/S0092-8674(00)00116-1.
  • Lee SR, Kwon KS, Kim SR, Rhee SG. 1998. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273:15366–15372. http://dx.doi.org/10.1074/jbc.273.25.15366.
  • Meng TC, Fukada T, Tonks NK. 2002. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9:387–399. http://dx.doi.org/10.1016/S1097-2765(02)00445-8.
  • Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M. 2005. Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661. http://dx.doi.org/10.1016/j.cell.2004.12.041.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.