23
Views
10
CrossRef citations to date
0
Altmetric
Article

Dysregulated Inflammatory Signaling upon Charcot-Marie-Tooth Type 1C Mutation of SIMPLE Protein

, , , , , , & show all
Pages 2464-2478 | Received 18 Mar 2015, Accepted 29 Apr 2015, Published online: 20 Mar 2023

REFERENCES

  • Magalhaes AC, Dunn H, Ferguson SS. 2011. Regulation of G protein-coupled receptor activity, trafficking, and localization by Gpcr-interacting proteins. Br J Pharmacol 165:1717–1736. http://dx.doi.org/10.1111/j.1476-5381.2011.01552.x.
  • Marchese A, Paing MM, Temple BR, Trejo J. 2008. G protein-coupled receptor sorting to endosomes and lysosomes. Annu Rev Pharmacol Toxicol 48:601–629. http://dx.doi.org/10.1146/annurev.pharmtox.48.113006.094646.
  • Platta HW, Stenmark H. 2011. Endocytosis and signaling. Curr Opin Cell Biol 23:393–403. http://dx.doi.org/10.1016/j.ceb.2011.03.008.
  • Sorkin A, Goh LK. 2009. Endocytosis and intracellular trafficking of ErbBs. Exp Cell Res 315:683–696. http://dx.doi.org/10.1016/j.yexcr.2008.07.029.
  • Zwang Y, Yarden Y. 2009. Systems biology of growth factor-induced receptor endocytosis. Traffic 10:349–363. http://dx.doi.org/10.1111/j.1600-0854.2008.00870.x.
  • Katoh Y, Shiba Y, Mitsuhashi H, Yanagida Y, Takatsu H, Nakayama K. 2004. Tollip and Tom1 form a complex and recruit ubiquitin-conjugated proteins onto early endosomes. J Biol Chem 279:24435–24443. http://dx.doi.org/10.1074/jbc.M400059200.
  • Premont RT, Gainetdinov RR. 2007. Physiological roles of G protein-coupled receptor kinases and arrestins. Annu Rev Physiol 69:511–534. http://dx.doi.org/10.1146/annurev.physiol.69.022405.154731.
  • Wang T, Liu NS, Seet LF, Hong W. 2010. The emerging role of VHS domain-containing Tom1, Tom1L1, and Tom1L2 in membrane trafficking. Traffic 11:1119–1128. http://dx.doi.org/10.1111/j.1600-0854.2010.01098.x.
  • Babst M. 2011. MVB vesicle formation: ESCRT-dependent, ESCRT-independent, and everything in between. Curr Opin Cell Biol 23:452–457. http://dx.doi.org/10.1016/j.ceb.2011.04.008.
  • Henne WM, Buchkovich NJ, Emr SD. 2011. The ESCRT pathway. Dev Cell 21:77–91. http://dx.doi.org/10.1016/j.devcel.2011.05.015.
  • Hurley JH. 2010. The ESCRT complexes. Crit Rev Biochem Mol Biol 45:463–487. http://dx.doi.org/10.3109/10409238.2010.502516.
  • Rusten TE, Vaccari T, Stenmark H. 2012. Shaping development with ESCRTs. Nat Cell Biol 14:38–45. http://dx.doi.org/10.1038/nrm3495.
  • Keller S, Sanderson MP, Stoeck A, Altevogt P. 2006. Exosomes: from biogenesis and secretion to biological function. Immunol Lett 107:102–108. http://dx.doi.org/10.1016/j.imlet.2006.09.005.
  • van Niel G, Porto-Carreiro I, Simoes S, Raposo G. 2006. Exosomes: a common pathway for a specialized function. J Biochem 140:13–21. http://dx.doi.org/10.1093/jb/mvj128.
  • Vella LJ, Sharples RA, Nisbet RM, Cappai R, Hill AF. 2008. The role of exosomes in the processing of proteins associated with neurodegenerative diseases. Eur Biophysics J 37:323–332. http://dx.doi.org/10.1007/s00249-007-0246-z.
  • Brankatschk B, Wichert SP, Johnson SD, Schaad O, Rossner MJ, Gruenberg J. 2012. Regulation of the EGF transcriptional response by endocytic sorting. Sci Signal 5:ra21. http://dx.doi.org/10.1126/scisignal.2002351.
  • Falguières T, Luyet P-P, Gruenberg J. 2009. Molecular assemblies and membrane domains in multivesicular endosome dynamics. Exp Cell Res 315:1567–1573. http://dx.doi.org/10.1016/j.yexcr.2008.12.006.
  • Lobert VH, Stenmark H. 2011. Cell polarity and migration: emerging role for the endosomal sorting machinery. Physiology (Bethesda) 26:171–180. http://dx.doi.org/10.1152/physiol.00054.2010.
  • Saksena S, Emr SD. 2009. ESCRTs and human disease. Biochem Soc Trans 037:167–172. http://dx.doi.org/10.1042/BST0370167.
  • Stuffers S, Brech A, Stenmark H. 2009. ESCRT proteins in physiology and disease. Exp Cell Res 315:1619–1626. http://dx.doi.org/10.1016/j.yexcr.2008.10.013.
  • Gasparrini F, Molfetta R, Quatrini L, Frati L, Santoni A, Paolini R. 2012. Syk-dependent regulation of Hrs phosphorylation and ubiquitination upon FεRI engagement: impact on Hrs membrane/cytosol localization. Eur J Immunol 42:2744–2753. http://dx.doi.org/10.1002/eji.201142278.
  • Row PE, Clague MJ, Urbe S. 2005. Growth factors induce differential phosphorylation profiles of the Hrs-STAM complex: a common node in signaling networks with signal-specific properties. Biochem J 389:629–636. http://dx.doi.org/10.1042/BJ20050067.
  • Stern KA, Visser Smit GD, Place TL, Winistorfer S, Piper RC, Lill NL. 2007. Epidermal growth factor receptor fate is controlled by Hrs tyrosine phosphorylation sites that regulate Hrs degradation. Mol Cell Biol 27:888–898. http://dx.doi.org/10.1128/MCB.02356-05.
  • Zhu H, Guariglia S, Yu RY, Li W, Brancho D, Peinado H, Lyden D, Salzer J, Bennett C, Chow CW. 2013. Mutation of SIMPLE in Charcot-Marie-Tooth 1C alters production of exosomes. Mol Biol Cell 24:1619–1637. http://dx.doi.org/10.1091/mbc.E12-07-0544.
  • Bennett CL, Shirk AJ, Huynh HM, Street VA, Nelis E, Van Maldergem L, De Jonghe P, Jordanova A, Guergueltcheva V, Tournev I, Van Den Bergh P, Seeman P, Mazanec R, Prochazka T, Kremensky I, Haberlova J, Weiss MD, Timmerman V, Bird TD, Chance PF. 2004. SIMPLE mutation in demyelinating neuropathy and distribution in sciatic nerve. Ann Neurol 55:713–720. http://dx.doi.org/10.1002/ana.20094.
  • Gerding WM, Koetting J, Epplen JT, Neusch C. 2009. Hereditary motor and sensory neuropathy caused by a novel mutation in LITAF. Neuromuscular Disorders 19:701–703. http://dx.doi.org/10.1016/j.nmd.2009.05.006.
  • Latour P, Gonnaud PM, Ollagnon E, Chan V, Perelman S, Stojkovic T, Stoll C, Vial C, Ziegler F, Vandenberghe A, Maire I. 2006. SIMPLE mutation analysis in dominant demyelinating Charcot-Marie-Tooth disease: three novel mutations. J Peripher Nerv Syst 11:148–155. http://dx.doi.org/10.1111/j.1085-9489.2006.00080.x.
  • Saifi GM, Szigeti K, Wiszniewski W, Shy ME, Krajewski K, Hausmanowa-Petrusewicz I, Kochanski A, Reeser S, Mancias P, Butler I, Lupski JR. 2005. SIMPLE mutations in Charcot-Marie-Tooth disease and the potential role of its protein product in protein degradation. Hum Mutat 25:372–383. http://dx.doi.org/10.1002/humu.20153.
  • Street VA, Goldy JD, Golden AS, Tempel BL, Bird TD, Chance PF. 2002. Mapping of Charcot-Marie-Tooth disease type 1C to chromosome 16p identifies a novel locus for demyelinating neuropathies. Am J Hum Genet 70:244–250. http://dx.doi.org/10.1086/337943.
  • Somandin C, Gerber D, Pereira JA, Horn M, Suter U. 2012. LITAF (SIMPLE) regulates Wallerian degeneration after injury but is not essential for peripheral nerve development and maintenance: implications for Charcot-Marie-Tooth disease. Glia 60:1518–1528. http://dx.doi.org/10.1002/glia.22371.
  • Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, Lang RA, Pollard JW. 2009. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment, and growth. PLoS One 4:e6562. http://dx.doi.org/10.1371/journal.pone.0006562.
  • Yang TT, Suk HY, Yang X, Olabisi O, Yu RY, Durand J, Jelicks LA, Kim JY, Scherer PE, Wang Y, Feng Y, Rossetti L, Graef IA, Crabtree GR, Chow CW. 2006. Role of transcription factor NFAT in glucose and insulin homeostasis. Mol Cell Biol 26:7372–7387. http://dx.doi.org/10.1128/MCB.00580-06.
  • Yang DP, Kim J, Syed N, Tung YJ, Bhaskaran A, Mindos T, Mirsky R, Jessen KR, Maurel P, Parkinson DB, Kim HA. 2012. p38 MAPK activation promotes denervated Schwann cell phenotype and functions as a negative regulator of Schwann cell differentiation and myelination. J Neurosci 32:7158–7168. http://dx.doi.org/10.1523/JNEUROSCI.5812-11.2012.
  • Shirk AJ, Anderson SK, Hashemi SH, Chance PF, Bennett CL. 2005. SIMPLE interacts with NEDD4 and TSG101: evidence for a role in lysosomal sorting and implications for Charcot-Marie-Tooth disease. J Neurosci Res 82:43–50. http://dx.doi.org/10.1002/jnr.20628.
  • Bache KG, Brech A, Mehlum A, Stenmark H. 2003. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J Cell Biol 162:435–442. http://dx.doi.org/10.1083/jcb.200302131.
  • Razi M, Futter CE. 2006. Distinct roles for Tsg101 and Hrs in multivesicular body formation and inward vesiculation. Mol Biol Cell 17:3469–3483. http://dx.doi.org/10.1091/mbc.E05-11-1054.
  • Eaton HE, Desrochers G, Drory SB, Metcalf J, Angers A, Brunetti CR. 2011. SIMPLE/LITAF expression induces the translocation of the ubiquitin ligase itch towards the lysosomal compartments. PLoS One 6:e16873. http://dx.doi.org/10.1371/journal.pone.0016873.
  • Chen YG. 2009. Endocytic regulation of TGF-beta signaling. Cell Res 19:58–70. http://dx.doi.org/10.1038/cr.2008.315.
  • De Boeck M, ten Dijke P. 2012. Key role for ubiquitin protein modification in TGFβ signal transduction. Uppsala J Med Sci 117:153–165. http://dx.doi.org/10.3109/03009734.2012.654858.
  • Heldin CH, Landstrom M, Moustakas A. 2009. Mechanism of TGF-β signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol 21:166–176. http://dx.doi.org/10.1016/j.ceb.2009.01.021.
  • Mu Y, Gudey SK, Landstrom M. 2012. Non-Smad signaling pathways. Cell Tissue Res 347:11–20. http://dx.doi.org/10.1007/s00441-011-1201-y.
  • Verstrepen L, Verhelst K, Carpentier I, Beyaert R. 2011. TAX1BP1, a ubiquitin-binding adaptor protein in innate immunity and beyond. Trends Biochem Sci 36:347–354. http://dx.doi.org/10.1016/j.tibs.2011.03.004.
  • Wuerzberger-Davis SM, Miyamoto S. 2010. TAK-ling IKK activation: “Ub” the judge. Sci Signal 3:pe3. http://dx.doi.org/10.1126/scisignal.3105pe3.
  • Xu P, Liu J, Derynck R. 2012. Post-translational regulation of TGF-β receptor and Smad signaling. FEBS Lett 586:1871–1884. http://dx.doi.org/10.1016/j.febslet.2012.05.010.
  • Ishitani T, Takaesu G, Ninomiya-Tsuji J, Shibuya H, Gaynor RB, Matsumoto K. 2003. Role of the TAB2-related protein TAB3 in IL-1 and TNF signaling. EMBO J 22:6277–6288. http://dx.doi.org/10.1093/emboj/cdg605.
  • Landstrom M. 2010. The TAK1-TRAF6 signaling pathway. Int J Biochem Cell Biol 42:585–589. http://dx.doi.org/10.1016/j.biocel.2009.12.023.
  • Sakurai H. 2012. Targeting of TAK1 in inflammatory disorders and cancer. Trends Pharmacol Sci 33:522–530. http://dx.doi.org/10.1016/j.tips.2012.06.007.
  • Skaug B, Jiang X, Chen ZJ. 2009. The role of ubiquitin in NF-κB regulatory pathways. Annu Rev Biochem 78:769–796. http://dx.doi.org/10.1146/annurev.biochem.78.070907.102750.
  • Clague MJ, Liu H, Urbe S. 2012. Governance of endocytic trafficking and signaling by reversible ubiquitylation. Dev Cell 23:457–467. http://dx.doi.org/10.1016/j.devcel.2012.08.011.
  • Corn JE, Vucic D. 2014. Ubiquitin in inflammation: the right linkage makes all the difference. Nat Struct Mol Biol 21:297–300. http://dx.doi.org/10.1038/nsmb.2808.
  • MacGurn JA, Hsu PC, Emr SD. 2012. Ubiquitin and membrane protein turnover: from cradle to grave. Annu Rev Biochem 81:231–259. http://dx.doi.org/10.1146/annurev-biochem-060210-093619.
  • Polo S. 2012. Signaling-mediated control of ubiquitin ligases in endocytosis. BMC Biol 10:25. http://dx.doi.org/10.1186/1741-7007-10-25.
  • Raiborg C, Stenmark H. 2009. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452. http://dx.doi.org/10.1038/nature07961.
  • Merrill JC, You J, Constable C, Leeman SE, Amar S. 2011. Whole-body deletion of LPS-induced TNF-α factor (LITAF) markedly improves experimental endotoxic shock and inflammatory arthritis. Proc Natl Acad Sci U S A 108:21247–21252. http://dx.doi.org/10.1073/pnas.1111492108.
  • Moriwaki Y, Begum NA, Kobayashi M, Matsumoto M, Toyoshima K, Seya T. 2001. Mycobacterium bovis Bacillus Calmette-Guerin and its cell wall complex induce a novel lysosomal membrane protein, SIMPLE, that bridges the missing link between lipopolysaccharide and p53-inducible gene, LITAF(PIG7), and estrogen-inducible gene, EET-1. J Biol Chem 276:23065–23076. http://dx.doi.org/10.1074/jbc.M011660200.
  • Srinivasan S, Leeman SE, Amar S. 2010. Beneficial dysregulation of the time course of inflammatory mediators in lipopolysaccharide-induced tumor necrosis factor alpha factor-deficient mice. Clin Vaccine Immunol 17:699–704. http://dx.doi.org/10.1128/CVI.00510-09.
  • Chung JY, Park YC, Ye H, Wu H. 2002. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J Cell Sci 115:679–688.
  • Xie P. 2013. TRAF molecules in cell signaling and in human diseases. J Mol Signal 8:7. http://dx.doi.org/10.1186/1750-2187-8-7.
  • Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X. 2002. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 22:7158–7167. http://dx.doi.org/10.1128/MCB.22.20.7158-7167.2002.
  • Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K, Ninomiya-Tsuji J, Matsumoto K. 2000. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 5:649–658. http://dx.doi.org/10.1016/S1097-2765(00)80244-0.
  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ. 2001. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412:346–351. http://dx.doi.org/10.1038/35085597.
  • Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K. 1999. The kinase TAK1 can activate the NIK-I κB as well as the MAP kinase cascade in the IL-1 signaling pathway. Nature 398:252–256. http://dx.doi.org/10.1038/18465.
  • Seet LF, Liu N, Hanson BJ, Hong W. 2004. Endofin recruits TOM1 to endosomes. J Biol Chem 279:4670–4679.
  • Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K. 1996. TAB1: an activator of the TAK1 MAPKKK in TGF-β signal transduction. Science 272:1179–1182. http://dx.doi.org/10.1126/science.272.5265.1179.
  • Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landstrom M. 2008. The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol 10:1199–1207. http://dx.doi.org/10.1038/ncb1780.
  • Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE. 2008. TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 31:918–924. http://dx.doi.org/10.1016/j.molcel.2008.09.002.
  • Kang JS, Liu C, Derynck R. 2009. New regulatory mechanisms of TGF-beta receptor function. Trends Cell Biol 19:385–394. http://dx.doi.org/10.1016/j.tcb.2009.05.008.
  • Massague J. 2012. TGFβ signaling in context. Nat Rev Mol Cell Biol 13:616–630. http://dx.doi.org/10.1038/nrm3434.
  • Moustakas A, Heldin CH. 2009. The regulation of TGFβ signal transduction. Development 136:3699–3714. http://dx.doi.org/10.1242/dev.030338.
  • Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PI, Yin X, Estrada K, Bis JC, Marciante K, Rivadeneira F, Noseworthy PA, Sotoodehnia N, Smith NL, Rotter JI, Kors JA, Witteman JC, Hofman A, Heckbert SR, O'Donnell AG, Uitterlinden CJ, Psaty BM, Lumley T, Larson MG, Stricker BH. 2009. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat Genet 41:399–406. http://dx.doi.org/10.1038/ng.364.
  • Pfeufer A, Sanna S, Arking DE, Muller M, Gateva V, Fuchsberger C, Ehret GB, Orru M, Pattaro C, Kottgen A, Perz S, Usala G, Barbalic M, Li M, Putz B, Scuteri A, Prineas RJ, Sinner MF, Gieger C, Najjar SS, Kao WH, Muhleisen TW, Dei M, Happle C, Mohlenkamp S, Crisponi L, Erbel R, Jockel KH, Naitza S, Steinbeck G, Marroni F, Hicks AA, Lakatta E, Muller-Myhsok B, Pramstaller PP, Wichmann HE, Schlessinger D, Boerwinkle E, Meitinger T, Uda M, Coresh J, Kaab S, Abecasis GR, Chakravarti A. 2009. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet 41:407–414. http://dx.doi.org/10.1038/ng.362.
  • Bertolo C, Roa S, Sagardoy A, Mena-Varas M, Robles EF, Martinez-Ferrandis JI, Sagaert X, Tousseyn T, Orta A, Lossos IS, Amar S, Natkunam Y, Briones J, Melnick A, Malumbres R, Martinez-Climent JA. 2013. LITAF, a BCL6 target gene, regulates autophagy in mature B-cell lymphomas. Br J Haematol 162:621–630. http://dx.doi.org/10.1111/bjh.12440.
  • Wang D, Liu J, Tang K, Xu Z, Xiong X, Rao Q, Wang M, Wang J. 2009. Expression of pig7 gene in acute leukemia and its potential to modulate the chemosensitivity of leukemic cells. Leuk Res 33:28–38. http://dx.doi.org/10.1016/j.leukres.2008.06.034.
  • Zhou J, Yang Z, Tsuji T, Gong J, Xie J, Chen C, Li W, Amar S, Luo Z. 2011. LITAF and TNFSF15, two downstream targets of AMPK, exert inhibitory effects on tumor growth. Oncogene 30:1892–1900. http://dx.doi.org/10.1038/onc.2010.575.
  • Behrends C, Harper JW. 2011. Constructing and decoding unconventional ubiquitin chains. Nat Struct Mol Biol 18:520–528. http://dx.doi.org/10.1038/nsmb.2066.
  • Kommaddi RP, Shenoy SK. 2013. Arrestins and protein ubiquitination. Prog Mol Biol Transl Sci 118:175–204. http://dx.doi.org/10.1016/B978-0-12-394440-5.00007-3.
  • Shukla AK, Xiao K, Lefkowitz RJ. 2011. Emerging paradigms of beta-arrestin-dependent seven transmembrane receptor signaling. Trends Biochem Sci 36:457–469. http://dx.doi.org/10.1016/j.tibs.2011.06.003.
  • Tian X, Kang DS, Benovic JL. 2014. beta-arrestins and G protein-coupled receptor trafficking. Handb Exp Pharmacol 219:173–186. http://dx.doi.org/10.1007/978-3-642-41199-1_9.
  • Becuwe M, Herrador A, Haguenauer-Tsapis R, Vincent O, Leon S. 2012. Ubiquitin-mediated regulation of endocytosis by proteins of the arrestin family. Biochem Res Int 2012:242764. http://dx.doi.org/10.1155/2012/242764.
  • Puca L, Brou C. 2014. Alpha-arrestins: new players in Notch and GPCR signaling pathways in mammals. J Cell Sci 127:1359–1367. http://dx.doi.org/10.1242/jcs.142539.
  • Rauch S, Martin-Serrano J. 2011. Multiple interactions between the ESCRT machinery and arrestin-related proteins: implications for PPXY-dependent budding. J Virol 85:3546–3556. http://dx.doi.org/10.1128/JVI.02045-10.
  • Puca L, Chastagner P, Meas-Yedid V, Israel A, Brou C. 2013. α-Arrestin 1 (ARRDC1) and β-arrestins cooperate to mediate Notch degradation in mammals. J Cell Sci 126:4457–4468. http://dx.doi.org/10.1242/jcs.130500.
  • Huotari J, Helenius A. 2011. Endosome maturation. EMBO J 30:3481–3500. http://dx.doi.org/10.1038/emboj.2011.286.
  • Mittelbrunn M, Sanchez-Madrid F. 2012. Intercellular communication: diverse structures for exchange of genetic information. Nat Rev Mol Cell Biol 13:328–335. http://dx.doi.org/10.1038/nrm3335.
  • Simons M, Raposo G. 2009. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581. http://dx.doi.org/10.1016/j.ceb.2009.03.007.
  • Katoh M. 2013. Therapeutics targeting angiogenesis: genetics and epigenetics, extracellular miRNAs and signaling networks. Int J Mol Med 32:763–767. http://dx.doi.org/10.3892/ijmm.2013.1444.
  • Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P, Oon CE, Leek R, Edelmann M, Kessler B, Sainson RC, Sargent I, Li JL, Harris AL. 2010. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood 116:2385–2394. http://dx.doi.org/10.1182/blood-2009-08-239228.
  • Kuo L, Freed EO. 2012. ARRDC1 as a mediator of microvesicle budding. Proc Natl Acad Sci U S A 109:4025–4026. http://dx.doi.org/10.1073/pnas.1201441109.
  • Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. 2012. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc Natl Acad Sci U S A 109:4146–4151. http://dx.doi.org/10.1073/pnas.1200448109.
  • Bhoj VG, Chen ZJ. 2009. Ubiquitylation in innate and adaptive immunity. Nature 458:430–437. http://dx.doi.org/10.1038/nature07959.
  • Blanc C, Charette SJ, Mattei S, Aubry L, Smith EW, Cosson P, Letourneur F. 2009. Dictyostelium Tom1 participates to an ancestral ESCRT-0 complex. Traffic 10:161–171. http://dx.doi.org/10.1111/j.1600-0854.2008.00855.x.
  • Herman EK, Walker G, van der Giezen M, Dacks JB. 2011. Multivesicular bodies in the enigmatic amoeboflagellate Breviata anathema and the evolution of ESCRT 0. J Cell Sci 124:613–621. http://dx.doi.org/10.1242/jcs.078436.
  • Yamakami M, Yoshimori T, Yokosawa H. 2003. Tom1, a VHS domain-containing protein, interacts with Tollip, ubiquitin, and clathrin. J Biol Chem 278:52865–52872. http://dx.doi.org/10.1074/jbc.M306740200.
  • Tang X, Metzger D, Leeman S, Amar S. 2006. LPS-induced TNF-alpha factor (LITAF)-deficient mice express reduced LPS-induced cytokine: evidence for LITAF-dependent LPS signaling pathways. Proc Natl Acad Sci U S A 103:13777–13782. http://dx.doi.org/10.1073/pnas.0605988103.
  • Luttrell LM. 2014. Minireview: more than just a hammer: ligand “bias” and pharmaceutical discovery. Mol Endocrinol 28:281–294. http://dx.doi.org/10.1210/me.2013-1314.
  • Shukla AK. 2014. Biasing GPCR signaling from inside. Sci Signal 7:pe3. http://dx.doi.org/10.1126/scisignal.2005021.
  • Wisler JW, Xiao K, Thomsen AR, Lefkowitz RJ. 2014. Recent developments in biased agonism. Curr Opin Cell Biol 27:18–24. http://dx.doi.org/10.1016/j.ceb.2013.10.008.
  • Carr R, III, Du Y, Quoyer J, Panettieri RA, Jr, Janz JM, Bouvier M, Kobilka BK, Benovic JL. 2014. Development and characterization of pepducins as Gs-biased allosteric agonists. J Biol Chem 289:35668–35684. http://dx.doi.org/10.1074/jbc.M114.618819.
  • Chakir K, Depry C, Dimaano VL, Zhu WZ, Vanderheyden M, Bartunek J, Abraham TP, Tomaselli GF, Liu SB, Xiang YK, Zhang M, Takimoto E, Dulin N, Xiao RP, Zhang J, Kass DA. 2011. Gαs-biased β2-adrenergic receptor signaling from restoring synchronous contraction in the failing heart. Sci Transl Med 3:100ra188. http://dx.doi.org/10.1126/scitranslmed.3001909.
  • Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, Bressler EA, Hara MR, Shenoy SK, Gygi SP, Lefkowitz RJ. 2011. Distinct phosphorylation sites on the β2-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Sci Signal 4:ra51. http://dx.doi.org/10.1126/scisignal.2001707.
  • Violin JD, Crombie AL, Soergel DG, Lark MW. 2014. Biased ligands at G-protein-coupled receptors: promise and progress. Trends Pharmacol Sci 35:308–316. http://dx.doi.org/10.1016/j.tips.2014.04.007.
  • Nohe A, Keating E, Knaus P, Petersen NO. 2004. Signal transduction of bone morphogenetic protein receptors. Cell Signal 16:291–299. http://dx.doi.org/10.1016/j.cellsig.2003.08.011.
  • Wotton D, Massague J. 2001. Smad transcriptional corepressors in TGF beta family signaling. Curr Top Microbiol Immunol 254:145–164.
  • Kitisin K, Saha T, Blake T, Golestaneh N, Deng M, Kim C, Tang Y, Shetty K, Mishra B, Mishra L. 2007. TGF-β signaling in development. Sci STKE 2007:cm1.
  • Chance PF, Pleasure D. 1993. Charcot-Marie-Tooth syndrome. Arch Neurol 50:1180–1184. http://dx.doi.org/10.1001/archneur.1993.00540110060006.
  • Potulska-Chromik A, Sinkiewicz-Darol E, Kostera-Pruszczyk A, Drac H, Kabzinska D, Zakrzewska-Pniewska B, Golebiowski M, Kochanski A. 2012. Charcot-Marie-Tooth type 1C disease coexisting with progressive multiple sclerosis: a study of an overlapping syndrome. Folia Neuropathol 50:369–374.
  • Bird TD. 1998. Charcot-Marie-Tooth neuropathy type 1. In Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Fong C-T, Smith RJH (ed), GeneReviews. GeneReviews, Seattle, WA. http://www.ncbi.nlm.nih.gov/books/NBK1205/.
  • Chance PF. 2004. Genetic evaluation of inherited motor/sensory neuropathy. Suppl Clin Neurophysiol 57:228–242. http://dx.doi.org/10.1016/S1567-424X(09)70360-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.