10
Views
32
CrossRef citations to date
0
Altmetric
Article

Chronic Oxidative DNA Damage Due to DNA Repair Defects Causes Chromosomal Instability in Saccharomyces cerevisiae

, , , &
Pages 5432-5445 | Received 22 Feb 2008, Accepted 24 Jun 2008, Published online: 27 Mar 2023

REFERENCES

  • Admire, A., L. Shanks, N. Danzl, M. Wang, U. Weier, W. Stevens, E. Hunt, and T. Weinert. 2006. Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev. 20:159–173.
  • Al-Tassan, N., N. H. Chmiel, J. Maynard, N. Fleming, A. L. Livingston, G. T. Williams, A. K. Hodges, D. R. Davies, S. S. David, J. R. Sampson, and J. P. Cheadle. 2002. Inherited variants of MYH associated with somatic G:C→T:A mutations in colorectal tumors. Nat. Genet. 30:227–232.
  • Augeri, L., Y. M. Lee, A. B. Barton, and P. W. Doetsch. 1997. Purification, characterization, gene cloning, and expression of Saccharomyces cerevisiae redoxyendonuclease, a homolog of Escherichia coli endonuclease III. Biochemistry 36:721–729.
  • Bach, M. L., F. Lacroute, and D. Botstein. 1979. Evidence for transcriptional regulation of orotidine-5′-phosphate decarboxylase in yeast by hybridization of mRNA to the yeast structural gene cloned in Escherichia coli. Proc. Natl. Acad. Sci. USA 76:386–390.
  • Balakumaran, B. S., C. H. Freudenreich, and V. A. Zakian. 2000. CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae. Hum. Mol. Genet. 9:93–100.
  • Boiteux, S., and M. Guillet. 2004. Abasic sites in DNA: repair and biological consequences in Saccharomyces cerevisiae. DNA Repair (Amsterdam) 3:1–12.
  • Budanov, A. V., A. A. Sablina, E. Feinstein, E. V. Koonin, and P. M. Chumakov. 2004. Regeneration of peroxiredoxins by p53-regulated sestrins, homologs of bacterial AhpD. Science 304:596–600.
  • Cheadle, J. P., M. Krawczak, M. W. Thomas, A. K. Hodges, N. Al-Tassan, N. Fleming, and J. R. Sampson. 2002. Different combinations of biallelic APC mutation confer different growth advantages in colorectal tumours. Cancer Res. 62:363–366.
  • Chen, C., and R. D. Kolodner. 1999. Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat. Genet. 23:81–85.
  • Coussens, L. M., and Z. Werb. 2002. Inflammation and cancer. Nature 420:860–867.
  • Debrauwere, H., J. Buard, J. Tessier, D. Aubert, G. Vergnaud, and A. Nicolas. 1999. Meiotic instability of human minisatellite CEB1 in yeast requires DNA double-strand breaks. Nat. Genet. 23:367–371.
  • Debrauwere, H., S. Loeillet, W. Lin, J. Lopes, and A. Nicolas. 2001. Links between replication and recombination in Saccharomyces cerevisiae: a hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc. Natl. Acad. Sci. USA 98:8263–8269.
  • de Lange, T. 2005. Telomere-related genome instability in cancer. Cold Spring Harbor Symp. Quant. Biol. 70:197–204.
  • Doetsch, P. W., N. J. Morey, R. L. Swanson, and S. Jinks-Robertson. 2001. Yeast base excision repair: interconnections and networks. Prog. Nucleic Acid Res. Mol. Biol. 68:29–39.
  • Draviam, V. M., S. Xie, and P. K. Sorger. 2004. Chromosome segregation and genomic stability. Curr. Opin. Genet. Dev. 14:120–125.
  • Evert, B. A., T. B. Salmon, B. Song, L. Jingjing, W. Siede, and P. W. Doetsch. 2004. Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells. J. Biol. Chem. 279:22585–22594.
  • Frosina, G. 2004. Commentary: DNA base excision repair defects in human pathologies. Free Radic. Res. 38:1037–1054.
  • Fruehauf, J. P., and F. L. Meyskens, Jr. 2007. Reactive oxygen species: a breath of life or death? Clin. Cancer Res. 13:789–794.
  • Goebl, M. G., and T. D. Petes. 1986. Most of the yeast genomic sequences are not essential for cell growth and division. Cell 46:983–992.
  • Goldstein, A. L., and J. H. McCusker. 1999. Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15:1541–1553.
  • Gordenin, D. A., and M. A. Resnick. 1998. Yeast ARMs (DNA at-risk motifs) can reveal sources of genome instability. Mutat. Res. 400:45–58.
  • Haber, J. E., and M. Debatisse. 2006. Gene amplification: yeast takes a turn. Cell 125:1237–1240.
  • Hanahan, D., and R. A. Weinberg. 2000. The hallmarks of cancer. Cell 100:57–70.
  • Huang, M. E., and R. D. Kolodner. 2005. A biological network in Saccharomyces cerevisiae prevents the deleterious effects of endogenous oxidative DNA damage. Mol. Cell 17:709–720.
  • Hussain, S. P., L. J. Hofseth, and C. C. Harris. 2003. Radical causes of cancer. Nat. Rev. Cancer 3:276–285.
  • Jallepalli, P. V., and C. Lengauer. 2001. Chromosome segregation and cancer: cutting through the mystery. Nat. Rev. Cancer 1:109–117.
  • Jin, Y. H., R. Obert, P. M. Burgers, T. A. Kunkel, M. A. Resnick, and D. A. Gordenin. 2001. The 3′→5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc. Natl. Acad. Sci. USA 98:5122–5127.
  • Kokoska, R. J., L. Stefanovic, J. DeMai, and T. D. Petes. 2000. Increased rates of genomic deletions generated by mutations in the yeast gene encoding DNA polymerase delta or by decreases in the cellular levels of DNA polymerase delta. Mol. Cell. Biol. 20:7490–7504.
  • Kolodner, R. D., C. D. Putnam, and K. Myung. 2002. Maintenance of genome stability in Saccharomyces cerevisiae. Science 297:552–557.
  • Kopnin, P. B., L. S. Agapova, B. P. Kopnin, and P. M. Chumakov. 2007. Repression of sestrin family genes contributes to oncogenic Ras-induced reactive oxygen species up-regulation and genetic instability. Cancer Res. 67:4671–4678.
  • Lemoine, F. J., N. P. Degtyareva, K. Lobachev, and T. D. Petes. 2005. Chromosomal translocations in yeast induced by low levels of DNA polymerase: a model for chromosome fragile sites. Cell 120:587–598.
  • Lengauer, C., K. W. Kinzler, and B. Vogelstein. 1998. Genetic instabilities in human cancers. Nature 396:643–649.
  • Libuda, D. E., and F. Winston. 2006. Amplification of histone genes by circular chromosome formation in Saccharomyces cerevisiae. Nature 443:1003–1007.
  • Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362:709–715.
  • Lobachev, K. S., A. Rattray, and V. Narayanan. 2007. Hairpin- and cruciform-mediated chromosome breakage: causes and consequences in eukaryotic cells. Front. Biosci. 12:4208–4220.
  • McMurray, M. A., and D. E. Gottschling. 2004. Aging and genetic instability in yeast. Curr. Opin. Microbiol. 7:673–679.
  • Michor, F., Y. Iwasa, B. Vogelstein, C. Lengauer, and M. A. Nowak. 2005. Can chromosomal instability initiate tumorigenesis? Semin. Cancer Biol. 15:43–49.
  • Mieczkowski, P. A., F. J. Lemoine, and T. D. Petes. 2006. Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair (Amsterdam) 5:1010–1020.
  • Mortimer, R. K., and J. R. Johnston. 1986. Genealogy of principal strains of the yeast genetic stock center. Genetics 113:35–43.
  • Narayanan, V., P. A. Mieczkowski, H. M. Kim, T. D. Petes, and K. S. Lobachev. 2006. The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks. Cell 125:1283–1296.
  • Park, S. G., M. K. Cha, W. Jeong, and I. H. Kim. 2000. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275:5723–5732.
  • Pinkel, D., and D. G. Albertson. 2005. Comparative genomic hybridization. Annu. Rev. Genomics Hum. Genet. 6:331–354.
  • Popoff, S. C., A. I. Spira, A. W. Johnson, and B. Demple. 1990. Yeast structural gene (APN1) for the major apurinic endonuclease: homology to Escherichia coli endonuclease IV. Proc. Natl. Acad. Sci. USA 87:4193–4197.
  • Ragu, S., G. Faye, I. Iraqui, A. Masurel-Heneman, R. D. Kolodner, and M. E. Huang. 2007. Oxygen metabolism and reactive oxygen species cause chromosomal rearrangements and cell death. Proc. Natl. Acad. Sci. USA 104:9747–9752.
  • Rajagopalan, H., M. A. Nowak, B. Vogelstein, and C. Lengauer. 2003. The significance of unstable chromosomes in colorectal cancer. Nat. Rev. Cancer 3:695–701.
  • Reitmair, A. H., R. Risley, R. G. Bristow, T. Wilson, A. Ganesh, A. Jang, J. Peacock, S. Benchimol, R. P. Hill, T. W. Mak, R. Fishel, and M. Meuth. 1997. Mutator phenotype in Msh2-deficient murine embryonic fibroblasts. Cancer Res. 57:3765–3771.
  • Salmon, T. B., B. A. Evert, B. Song, and P. W. Doetsch. 2004. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 32:3712–3723.
  • Shih, I. M., W. Zhou, S. N. Goodman, C. Lengauer, K. W. Kinzler, and B. Vogelstein. 2001. Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res. 61:818–822.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Spencer, F., S. L. Gerring, C. Connelly, and P. Hieter. 1990. Mitotic chromosome transmission fidelity mutants in Saccharomyces cerevisiae. Genetics 124:237–249.
  • Swanson, R. L., N. J. Morey, P. W. Doetsch, and S. Jinks-Robertson. 1999. Overlapping specificities of base excision repair, nucleotide excision repair, recombination, and translesion synthesis pathways for DNA base damage in Saccharomyces cerevisiae. Mol. Cell. Biol. 19:2929–2935.
  • Symington, L. S. 2002. Role of RAD52 epistasis group genes in homologous recombination and double-strand break repair. Microbiol. Mol. Biol. Rev. 66:630–670.
  • Szatrowski, T. P., and C. F. Nathan. 1991. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51:794–798.
  • Vafa, O., M. Wade, S. Kern, M. Beeche, T. K. Pandita, G. M. Hampton, and G. M. Wahl. 2002. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function: a mechanism for oncogene-induced genetic instability. Mol. Cell 9:1031–1044.
  • van Steensel, B., A. Smogorzewska, and T. de Lange. 1998. TRF2 protects human telomeres from end-to-end fusions. Cell 92:401–413.
  • Wach, A., A. Brachat, R. Pohlmann, and P. Philippsen. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10:1793–1808.
  • Weinstock, D. M., C. A. Richardson, B. Elliott, and M. Jasin. 2006. Modeling oncogenic translocations: distinct roles for double-strand break repair pathways in translocation formation in mammalian cells. DNA Repair (Amsterdam) 5:1065–1074.
  • Wong, C. M., K. L. Siu, and D. Y. Jin. 2004. Peroxiredoxin-null yeast cells are hypersensitive to oxidative stress and are genomically unstable. J. Biol. Chem. 279:23207–23213.
  • You, H. J., R. L. Swanson, C. Harrington, A. H. Corbett, S. Jinks-Robertson, S. Senturker, S. S. Wallace, S. Boiteux, M. Dizdaroglu, and P. W. Doetsch. 1999. Saccharomyces cerevisiae Ntg1p and Ntg2p: broad specificity N-glycosylases for the repair of oxidative DNA damage in the nucleus and mitochondria. Biochemistry 38:11298–11306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.