53
Views
9
CrossRef citations to date
0
Altmetric
Research Article

MBD4 Facilitates Immunoglobulin Class Switch Recombination

, &
Article: e00316-16 | Received 02 Jun 2016, Accepted 30 Sep 2016, Published online: 17 Mar 2023

REFERENCES

  • Chaudhuri J, Basu U, Zarrin A, Yan C, Franco S, Perlot T, Vuong B, Wang J, Phan RT, Datta A, Manis J, Alt FW. 2007. Evolution of the immunoglobulin heavy chain class switch recombination mechanism. Adv Immunol 94:157–214. https://doi.org/10.1016/S0065-2776(06)94006-1.
  • Kenter AL. 2012. AID targeting is dependent on RNA polymerase II pausing. Semin Immunol 24:281–286. https://doi.org/10.1016/j.smim.2012.06.001.
  • Feldman S, Achour I, Wuerffel R, Kumar S, Gerasimova T, Sen R, Kenter AL. 2015. Constraints contributed by chromatin looping limit recombination targeting during Ig class switch recombination. J Immunol 194:2380–2389. https://doi.org/10.4049/jimmunol.1401170.
  • Matthews AJ, Zheng S, DiMenna LJ, Chaudhuri J. 2014. Regulation of immunoglobulin class-switch recombination: choreography of noncoding transcription, targeted DNA deamination, and long-range DNA repair. Adv Immunol 122:1–57. https://doi.org/10.1016/B978-0-12-800267-4.00001-8.
  • Rada C, Williams GT, Nilsen H, Barnes DE, Lindahl T, Neuberger MS. 2002. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr Biol 12:1748–1755. https://doi.org/10.1016/S0960-9822(02)01215-0.
  • Stavnezer J, Guikema JE, Schrader CE. 2008. Mechanism and regulation of class switch recombination. Annu Rev Immunol 26:261–292. https://doi.org/10.1146/annurev.immunol.26.021607.090248.
  • Durandy A, Peron S, Fischer A. 2006. Hyper-IgM syndromes. Curr Opin Rheumatol 18:369–376. https://doi.org/10.1097/01.bor.0000231905.12172.b5.
  • Schrader CE, Guikema JE, Linehan EK, Selsing E, Stavnezer J. 2007. Activation-induced cytidine deaminase-dependent DNA breaks in class switch recombination occur during G1 phase of the cell cycle and depend upon mismatch repair. J Immunol 179:6064–6071. https://doi.org/10.4049/jimmunol.179.9.6064.
  • Yan CT, Boboila C, Souza EK, Franco S, Hickernell TR, Murphy M, Gumaste S, Geyer M, Zarrin AA, Manis JP, Rajewsky K, Alt FW. 2007. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 449:478–482. https://doi.org/10.1038/nature06020.
  • Schrader CE, Linehan EK, Mochegova SN, Woodland RT, Stavnezer J. 2005. Inducible DNA breaks in Ig S regions are dependent on AID and UNG. J Exp Med 202:561–568. https://doi.org/10.1084/jem.20050872.
  • Visnes T, Doseth B, Pettersen HS, Hagen L, Sousa MM, Akbari M, Otterlei M, Kavli B, Slupphaug G, Krokan HE. 2009. Uracil in DNA and its processing by different DNA glycosylases. Philos Trans R Soc Lond B Biol Sci 364:563–568. https://doi.org/10.1098/rstb.2008.0186.
  • Di Noia JM, Rada C, Neuberger MS. 2006. SMUG1 is able to excise uracil from immunoglobulin genes: insight into mutation versus repair. EMBO J 25:585–595. https://doi.org/10.1038/sj.emboj.7600939.
  • Di Noia JM, Williams GT, Chan DT, Buerstedde JM, Baldwin GS, Neuberger MS. 2007. Dependence of antibody gene diversification on uracil excision. J Exp Med 204:3209–3219. https://doi.org/10.1084/jem.20071768.
  • Dingler FA, Kemmerich K, Neuberger MS, Rada C. 2014. Uracil excision by endogenous SMUG1 glycosylase promotes efficient Ig class switching and impacts on A:T substitutions during somatic mutation. Eur J Immunol 44:1925–1935. https://doi.org/10.1002/eji.201444482.
  • Rai K, Huggins IJ, James SR, Karpf AR, Jones DA, Cairns BR. 2008. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135:1201–1212. https://doi.org/10.1016/j.cell.2008.11.042.
  • Cortellino S, Turner D, Masciullo V, Schepis F, Albino D, Daniel R, Skalka AM, Meropol NJ, Alberti C, Larue L, Bellacosa A. 2003. The base excision repair enzyme MED1 mediates DNA damage response to antitumor drugs and is associated with mismatch repair system integrity. Proc Natl Acad Sci U S A 100:15071–15076. https://doi.org/10.1073/pnas.2334585100.
  • Grigera F, Bellacosa A, Kenter AL. 2013. Complex relationship between mismatch repair proteins and MBD4 during immunoglobulin class switch recombination. PLoS One 8: e78370. https://doi.org/10.1371/journal.pone.0078370.
  • Bellacosa A. 2001. Functional interactions and signaling properties of mammalian DNA mismatch repair proteins. Cell Death Differ 8:1076–1092. https://doi.org/10.1038/sj.cdd.4400948.
  • Bardwell PD, Martin A, Wong E, Li Z, Edelmann W, Scharff MD. 2003. The G-U mismatch glycosylase methyl-CpG binding domain 4 is dispensable for somatic hypermutation and class switch recombination. J Immunol 170:1620–1624. https://doi.org/10.4049/jimmunol.170.4.1620.
  • Hendrich B, Abbott C, McQueen H, Chambers D, Cross S, Bird A. 1999. Genomic structure and chromosomal mapping of the murine and human Mbd1, Mbd2, Mbd3, and Mbd4 genes. Mamm Genome 10:906–912. https://doi.org/10.1007/s003359901112.
  • Hashimoto H, Zhang X, Cheng X. 2012. Excision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation. Nucleic Acids Res 40:8276–8284. https://doi.org/10.1093/nar/gks628.
  • Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318. https://doi.org/10.1038/ng1966.
  • Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, Hanna J, Lodato MA, Frampton GM, Sharp PA, Boyer LA, Young RA, Jaenisch R. 2010. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107:21931–21936. https://doi.org/10.1073/pnas.1016071107.
  • Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS, Taatjes DJ, Dekker J, Young RA. 2010. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467:430–435. https://doi.org/10.1038/nature09380.
  • Muramatsu M, Sankaranand VS, Anant S, Sugai M, Kinoshita K, Davidson NO, Honjo T. 1999. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 274:18470–18476. https://doi.org/10.1074/jbc.274.26.18470.
  • Han L, Yu K. 2008. Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV-deficient B cells. J Exp Med 205:2745–2753. https://doi.org/10.1084/jem.20081623.
  • Masani S, Han L, Yu K. 2013. Apurinic/apyrimidinic endonuclease 1 is the essential nuclease during immunoglobulin class switch recombination. Mol Cell Biol 33:1468–1473. https://doi.org/10.1128/MCB.00026-13.
  • Han L, Mao W, Yu K. 2012. X-ray repair cross-complementing protein 1 (XRCC1) deficiency enhances class switch recombination and is permissive for alternative end joining. Proc Natl Acad Sci U S A 109:4604–4608. https://doi.org/10.1073/pnas.1120743109.
  • Han L, Masani S, Yu K. 2010. CTNNBL1 is dispensable for Ig class switch recombination. J Immunol 185:1379–1381. https://doi.org/10.4049/jimmunol.1001643.
  • Han L, Masani S, Hsieh CL, Yu K. 2014. DNA ligase I is not essential for mammalian cell viability. Cell Rep 7:316–320. https://doi.org/10.1016/j.celrep.2014.03.024.
  • Sternberg N, Hoess R. 1983. The molecular genetics of bacteriophage P1. Annu Rev Genet 17:123–154. https://doi.org/10.1146/annurev.ge.17.120183.001011.
  • Rush JS, Hasbold J, Hodgkin PD. 2002. Cross-linking surface Ig delays CD40 ligand- and IL-4-induced B cell Ig class switching and reveals evidence for independent regulation of B cell proliferation and differentiation. J Immunol 168:2676–2682. https://doi.org/10.4049/jimmunol.168.6.2676.
  • Bader SA, Walker M, Harrison DJ. 2007. A human cancer-associated truncation of MBD4 causes dominant negative impairment of DNA repair in colon cancer cells. Br J Cancer 96:660–666. https://doi.org/10.1038/sj.bjc.6603592.
  • Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. 2013. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8:2281–2308. https://doi.org/10.1038/nprot.2013.143.
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821. https://doi.org/10.1126/science.1225829.
  • Bellacosa A, Cicchillitti L, Schepis F, Riccio A, Yeung AT, Matsumoto Y, Golemis EA, Genuardi M, Neri G. 1999. MED1, a novel human methyl-CpG-binding endonuclease, interacts with DNA mismatch repair protein MLH1. Proc Natl Acad Sci U S A 96:3969–3974. https://doi.org/10.1073/pnas.96.7.3969.
  • Wuerffel RA, Du J, Thompson RJ, Kenter AL. 1997. Ig Sγ3 DNA-specific double strand breaks are induced in mitogen-activated B cells and are implicated in switch recombination. J Immunol 159:4139–4144.
  • Di Noia JM, Neuberger MS. 2007. Molecular mechanisms of antibody somatic hypermutation. Annu Rev Biochem 76:1–22. https://doi.org/10.1146/annurev.biochem.76.061705.090740.
  • Schrader CE, Guikema JE, Wu X, Stavnezer J. 2009. The roles of APE1, APE2, DNA polymerase beta and mismatch repair in creating S region DNA breaks during antibody class switch. Philos Trans R Soc Lond B Biol Sci 364:645–652. https://doi.org/10.1098/rstb.2008.0200.
  • Bregenhorn S, Kallenberger L, Artola-Boran M, Pena-Diaz J, Jiricny J. 2016. Non-canonical uracil processing in DNA gives rise to double-strand breaks and deletions: relevance to class switch recombination. Nucleic Acids Res 44:2691–2705. https://doi.org/10.1093/nar/gkv1535.
  • Xue K, Rada C, Neuberger MS. 2006. The in vivo pattern of AID targeting to immunoglobulin switch regions deduced from mutation spectra in msh2−/− ung−/− mice. J Exp Med 203:2085–2094. https://doi.org/10.1084/jem.20061067.
  • Rush JS, Fugmann SD, Schatz DG. 2004. Staggered AID-dependent DNA double strand breaks are the predominant DNA lesions targeted to S mu in Ig class switch recombination. Int Immunol 16:549–557. https://doi.org/10.1093/intimm/dxh057.
  • Wang L, Wuerffel R, Feldman S, Khamlichi AA, Kenter AL. 2009. S region sequence, RNA polymerase II, and histone modifications create chromatin accessibility during class switch recombination. J Exp Med 206:1817–1830. https://doi.org/10.1084/jem.20081678.
  • Daniel JA, Santos MA, Wang Z, Zang C, Schwab KR, Jankovic M, Filsuf D, Chen HT, Gazumyan A, Yamane A, Cho YW, Sun HW, Ge K, Peng W, Nussenzweig MC, Casellas R, Dressler GR, Zhao K, Nussenzweig A. 2010. PTIP promotes chromatin changes critical for immunoglobulin class switch recombination. Science 329:917–923. https://doi.org/10.1126/science.1187942.
  • Min IM, Rothlein LR, Schrader CE, Stavnezer J, Selsing E. 2005. Shifts in targeting of class switch recombination sites in mice that lack mu switch region tandem repeats or Msh2. J Exp Med 201:1885–1890. https://doi.org/10.1084/jem.20042491.
  • Ehrenstein MR, Neuberger MS. 1999. Deficiency in Msh2 affects the efficiency and local sequence specificity of immunoglobulin class-switch recombination: parallels with somatic hypermutation. EMBO J 18:3484–3490. https://doi.org/10.1093/emboj/18.12.3484.
  • Schrader CE, Vardo J, Stavnezer J. 2002. Role for mismatch repair proteins Msh2, Mlh1, and Pms2 in immunoglobulin class switching shown by sequence analysis of recombination junctions. J Exp Med 195:367–373. https://doi.org/10.1084/jem.20011877.
  • Stavnezer J, Bjorkman A, Du L, Cagigi A, Pan-Hammarstrom Q. 2010. Mapping of switch recombination junctions, a tool for studying DNA repair pathways during immunoglobulin class switching. Adv Immunol 108:45–109. https://doi.org/10.1016/B978-0-12-380995-7.00003-3.
  • Sjolund AB, Senejani AG, Sweasy JB. 2013. MBD4 and TDG: multifaceted DNA glycosylases with ever expanding biological roles. Mutat Res 743–744:12–25. https://doi.org/10.1016/j.mrfmmm.2012.11.001.
  • Screaton RA, Kiessling S, Sansom OJ, Millar CB, Maddison K, Bird A, Clarke AR, Frisch SM. 2003. Fas-associated death domain protein interacts with methyl-CpG binding domain protein 4: a potential link between genome surveillance and apoptosis. Proc Natl Acad Sci U S A 100:5211–5216. https://doi.org/10.1073/pnas.0431215100.
  • Ruzov A, Shorning B, Mortusewicz O, Dunican DS, Leonhardt H, Meehan RR. 2009. MBD4 and MLH1 are required for apoptotic induction in xDNMT1-depleted embryos. Development 136:2277–2286. https://doi.org/10.1242/dev.032227.
  • Lieber MR. 2010. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem 79:181–211. https://doi.org/10.1146/annurev.biochem.052308.093131.
  • Iyer RR, Pluciennik A, Burdett V, Modrich PL. 2006. DNA mismatch repair: functions and mechanisms. Chem Rev 106:302–323. https://doi.org/10.1021/cr0404794.
  • Kadyrova LY, Kadyrov FA. 2016. Endonuclease activities of MutLalpha and its homologs in DNA mismatch repair. DNA Repair (Amst) 38:42–49. https://doi.org/10.1016/j.dnarep.2015.11.023.
  • Schrader CE, Vardo J, Stavnezer J. 2003. Mlh1 can function in antibody class switch recombination independently of Msh2. J Exp Med 197:1377–1383. https://doi.org/10.1084/jem.20022190.
  • Nowak U, Matthews AJ, Zheng S, Chaudhuri J. 2011. The splicing regulator PTBP2 interacts with the cytidine deaminase AID and promotes binding of AID to switch-region DNA. Nat Immunol 12:160–166. https://doi.org/10.1038/ni.1977.
  • Wuerffel R, Wang L, Grigera F, Manis J, Selsing E, Perlot T, Alt FW, Cogne M, Pinaud E, Kenter AL. 2007. S-S synapsis during class switch recombination is promoted by distantly located transcriptional elements and activation-induced deaminase. Immunity 27:711–722. https://doi.org/10.1016/j.immuni.2007.09.007.
  • Kumar S, Wuerffel R, Achour I, Lajoie B, Sen R, Dekker J, Feeney AJ, Kenter AL. 2013. Flexible ordering of antibody class switch and V(D)J joining during B-cell ontogeny. Genes Dev 27:2439–2444. https://doi.org/10.1101/gad.227165.113.
  • Rhinn H, Marchand-Leroux C, Croci N, Plotkine M, Scherman D, Escriou V. 2008. Housekeeping while brain's storming: validation of normalizing factors for gene expression studies in a murine model of traumatic brain injury. BMC Mol Biol 9:62. https://doi.org/10.1186/1471-2199-9-62.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.