38
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multilevel Regulation of Protein Kinase CδI Alternative Splicing by Lithium Chloride

, , , , , & ORCID Icon show all
Article: e00338-20 | Received 09 Jul 2020, Accepted 23 Nov 2020, Published online: 03 Mar 2023

REFERENCES

  • Bowden CL, Calabrese JR, Ketter TA, Sachs GS, White RL, Thompson TR. 2006. Impact of lamotrigine and lithium on weight in obese and nonobese patients with bipolar I disorder. Am J Psychiatry 163:1199–1201. https://doi.org/10.1176/appi.ajp.163.7.1199.
  • Chengappa KN, Chalasani L, Brar JS, Parepally H, Houck P, Levine J. 2002. Changes in body weight and body mass index among psychiatric patients receiving lithium, valproate, or topiramate: an open-label, nonrandomized chart review. Clin Ther 24:1576–1584. https://doi.org/10.1016/S0149-2918(02)80061-3.
  • Vestergaard P, Schou M. 1989. Weight gain with lithium. J Clin Psychopharmacol 9:227. https://doi.org/10.1097/00004714-198906000-00020.
  • Carter G, Apostolatos A, Patel R, Mathur A, Cooper D, Murr M, Patel NA. 2013. Dysregulated alternative splicing pattern of PKC during differentiation of human preadipocytes represents distinct differences between lean and obese adipocytes. ISRN Obes 2013:161345. https://doi.org/10.1155/2013/161345.
  • Green H, Kehinde O. 1979. Formation of normally differentiated subcutaneous fat pads by an established preadipose cell line. J Cell Physiol 101:169–171. https://doi.org/10.1002/jcp.1041010119.
  • Green H, Kehinde O. 1975. An established preadipose cell line and its differentiation in culture. II. Factors affecting the adipose conversion. Cell 5:19–27. https://doi.org/10.1016/0092-8674(75)90087-2.
  • Nishizuka Y. 1986. Studies and perspectives of protein kinase C. Science 233:305–312. https://doi.org/10.1126/science.3014651.
  • Patel R, Apostolatos A, Carter G, Ajmo J, Gali M, Cooper DR, You M, Bisht KS, Patel NA. 2013. Protein kinase C delta (PKCdelta) splice variants modulate apoptosis pathway in 3T3L1 cells during adipogenesis: identification of PKCdeltaII inhibitor. J Biol Chem 288:26834–26846. https://doi.org/10.1074/jbc.M113.482638.
  • Patel RS, Carter G, Cooper DR, Apostolatos H, Patel NA. 2014. Transformer 2beta homolog (Drosophila) (TRA2B) regulates protein kinase C deltaI (PKCdeltaI) splice variant expression during 3T3L1 preadipocyte cell cycle. J Biol Chem 289:31662–31672. https://doi.org/10.1074/jbc.M114.592337.
  • Grellscheid S, Dalgliesh C, Storbeck M, Best A, Liu Y, Jakubik M, Mende Y, Ehrmann I, Curk T, Rossbach K, Bourgeois CF, Stevenin J, Grellscheid D, Jackson MS, Wirth B, Elliott DJ. 2011. Identification of evolutionarily conserved exons as regulated targets for the splicing activator tra2beta in development. PLoS Genet 7:e1002390. https://doi.org/10.1371/journal.pgen.1002390.
  • Wang N, He L, Yang Y, Li S, Chen Y, Tian Z, Ji Y, Wang Y, Pang M, Wang Y, Liu B, Rong L. 2020. Integrated analysis of competing endogenous RNA (ceRNA) networks in subacute stage of spinal cord injury. Gene 726:144171. https://doi.org/10.1016/j.gene.2019.144171.
  • Kong Y, Hsieh CH, Alonso LC. 2018. ANRIL: a lncRNA at the CDKN2A/B locus with roles in cancer and metabolic disease. Front Endocrinol (Lausanne) 9:405. https://doi.org/10.3389/fendo.2018.00405.
  • Zeng C, Liu S, Lu S, Yu X, Lai J, Wu Y, Chen S, Wang L, Yu Z, Luo G, Li Y. 2018. The c-Myc-regulated lncRNA NEAT1 and paraspeckles modulate imatinib-induced apoptosis in CML cells. Mol Cancer 17:130. https://doi.org/10.1186/s12943-018-0884-z.
  • Li B, Chen P, Qu J, Shi L, Zhuang W, Fu J, Li J, Zhang X, Sun Y, Zhuang W. 2014. Activation of LTBP3 gene by a long noncoding RNA (lncRNA) MALAT1 transcript in mesenchymal stem cells from multiple myeloma. J Biol Chem 289:29365–29375. https://doi.org/10.1074/jbc.M114.572693.
  • Chiu HS, Somvanshi S, Patel E, Chen TW, Singh VP, Zorman B, Patil SL, Pan Y, Chatterjee SS, Cancer Genome Atlas Research N, Sood AK, Gunaratne PH, Sumazin P, Cancer Genome Atlas Research Network. 2018. Pan-cancer analysis of lncRNA regulation supports their targeting of cancer genes in each tumor context. Cell Rep 23:297–312. https://doi.org/10.1016/j.celrep.2018.03.064.
  • Fok ET, Davignon L, Fanucchi S, Mhlanga MM. 2018. The lncRNA connection between cellular metabolism and epigenetics in trained immunity. Front Immunol 9:3184. https://doi.org/10.3389/fimmu.2018.03184.
  • Cooper DR, Carter G, Li P, Patel R, Watson JE, Patel NA. 2014. Long non-coding RNA NEAT1 associates with SRp40 to temporally regulate PPARgamma2 splicing during adipogenesis in 3T3L1 cells. Genes (Basel) 5:1050–1063. https://doi.org/10.3390/genes5041050.
  • Cui B, Jin J, Ding X, Deng M, Yu S, Song M, Yu Y, Zhao X, Chen J, Huang L. 2015. Glycogen synthase kinase 3beta inhibition enhanced proliferation, migration and functional re-endothelialization of endothelial progenitor cells in hypercholesterolemia microenvironment. Exp Biol Med (Maywood) 240:1752–1763. https://doi.org/10.1177/1535370215589908.
  • Gao S, Li S, Duan X, Gu Z, Ma Z, Yuan X, Feng X, Wang H. 2017. Inhibition of glycogen synthase kinase 3 beta (GSK3beta) suppresses the progression of esophageal squamous cell carcinoma by modifying STAT3 activity. Mol Carcinog 56:2301–2316. https://doi.org/10.1002/mc.22685.
  • Vijay GV, Zhao N, Den Hollander P, Toneff MJ, Joseph R, Pietila M, Taube JH, Sarkar TR, Ramirez-Pena E, Werden SJ, Shariati M, Gao R, Sobieski M, Stephan CC, Sphyris N, Miura N, Davies P, Chang JT, Soundararajan R, Rosen JM, Mani SA. 2019. GSK3beta regulates epithelial-mesenchymal transition and cancer stem cell properties in triple-negative breast cancer. Breast Cancer Res 21:37. https://doi.org/10.1186/s13058-019-1125-0.
  • Ross SE, Erickson RL, Hemati N, MacDougald OA. 1999. Glycogen synthase kinase 3 is an insulin-regulated C/EBPalpha kinase. Mol Cell Biol 19:8433–8441. https://doi.org/10.1128/mcb.19.12.8433.
  • Beurel E, Grieco SF, Jope RS. 2015. Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114–131. https://doi.org/10.1016/j.pharmthera.2014.11.016.
  • Meares GP, Jope RS. 2007. Resolution of the nuclear localization mechanism of glycogen synthase kinase-3: functional effects in apoptosis. J Biol Chem 282:16989–17001. https://doi.org/10.1074/jbc.M700610200.
  • Monteiro MC, Wdziekonski B, Villageois P, Vernochet C, Iehle C, Billon N, Dani C. 2009. Commitment of mouse embryonic stem cells to the adipocyte lineage requires retinoic acid receptor beta and active GSK3. Stem Cell Dev 18:457–463. https://doi.org/10.1089/scd.2008.0154.
  • Hasannejad M, Samsamshariat SZ, Esmaili A, Jahanian-Najafabadi A. 2019. Klotho induces insulin resistance possibly through interference with GLUT4 translocation and activation of Akt, GSK3beta, and PFKfbeta3 in 3T3L1 adipocyte cells. Res Pharma Sci 14:369–377. https://doi.org/10.4103/1735-5362.263627.
  • Chi YY, Shen JL, Zhang J, Shan AS, Niu SL, Zhou CH, Lee HG, Jin YC. 2016. Lithium chloride's inhibition of 3T3L1 cell differentiation by regulating the Wnt/beta-catenin pathway and enhancing villin 2 expression. Food Sci Biotechnol 25:1147–1153. https://doi.org/10.1007/s10068-016-0183-7.
  • Shinde MY, Sidoli S, Kulej K, Mallory MJ, Radens CM, Reicherter AL, Myers RL, Barash Y, Lynch KW, Garcia BA, Klein PS. 2017. Phosphoproteomics reveals that glycogen synthase kinase-3 phosphorylates multiple splicing factors and is associated with alternative splicing. J Biol Chem 292:18240–18255. https://doi.org/10.1074/jbc.M117.813527.
  • Qin L, Chen Y, Niu Y, Chen W, Wang Q, Xiao S, Li A, Xie Y, Li J, Zhao X, He Z, Mo D. 2010. A deep investigation into the adipogenesis mechanism: profile of microRNAs regulating adipogenesis by modulating the canonical Wnt/beta-catenin signaling pathway. BMC Genomics 11:320. https://doi.org/10.1186/1471-2164-11-320.
  • Vestergaard P, Poulstrup I, Schou M. 1988. Prospective studies on a lithium cohort. 3. Tremor, weight gain, diarrhea, psychological complaints. Acta Psychiatr Scand 78:434–441. https://doi.org/10.1111/j.1600-0447.1988.tb06363.x.
  • Grandjean EM, Aubry JM. 2009. Lithium: updated human knowledge using an evidence-based approach: part III: clinical safety. CNS Drugs 23:397–418. https://doi.org/10.2165/00023210-200923050-00004.
  • Vestergaard P, Schou M. 1988. Prospective studies on a lithium cohort. 1. General features. Acta Psychiatr Scand 78:421–426. https://doi.org/10.1111/j.1600-0447.1988.tb06361.x.
  • Apostolatos A, Song S, Acosta S, Peart M, Watson JE, Bickford P, Cooper DR, Patel NA. 2012. Insulin promotes neuronal survival via the alternatively spliced protein kinase CdeltaII isoform. J Biol Chem 287:9299–9310. https://doi.org/10.1074/jbc.M111.313080.
  • Li SJ, Qi Y, Zhao JJ, Li Y, Liu XY, Chen XH, Xu P. 2013. Characterization of nuclear localization signals (NLSs) and function of NLSs and phosphorylation of serine residues in subcellular and subnuclear localization of transformer-2beta (Tra2beta). J Biol Chem 288:8898–8909. https://doi.org/10.1074/jbc.M113.456715.
  • Lennox KA, Behlke MA. 2016. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res 44:863–877. https://doi.org/10.1093/nar/gkv1206.
  • Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB. 2009. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726. https://doi.org/10.1016/j.molcel.2009.01.026.
  • Orena SJ, Torchia AJ, Garofalo RS. 2000. Inhibition of glycogen-synthase kinase 3 stimulates glycogen synthase and glucose transport by distinct mechanisms in 3T3L1 adipocytes. J Biol Chem 275:15765–15772. https://doi.org/10.1074/jbc.M910002199.
  • Gupta A, Schulze TG, Nagarajan V, Akula N, Corona W, Jiang XY, Hunter N, McMahon FJ, Detera-Wadleigh SD. 2012. Interaction networks of lithium and valproate molecular targets reveal a striking enrichment of apoptosis functional clusters and neurotrophin signaling. Pharmacogenomics J 12:328–341. https://doi.org/10.1038/tpj.2011.9.
  • Walsh CM, Suchanek AL, Cyphert TJ, Kohan AB, Szeszel-Fedorowicz W, Salati LM. 2013. Serine arginine splicing factor 3 is involved in enhanced splicing of glucose-6-phosphate dehydrogenase RNA in response to nutrients and hormones in liver. J Biol Chem 288:2816–2828. https://doi.org/10.1074/jbc.M112.410803.
  • Patel NA, Chalfant CE, Watson JE, Wyatt JR, Dean NM, Eichler DC, Cooper DR. 2001. Insulin regulates alternative splicing of protein kinase C beta II through a phosphatidylinositol 3-kinase-dependent pathway involving the nuclear serine/arginine-rich splicing factor, SRp40, in skeletal muscle cells. J Biol Chem 276:22648–22654. https://doi.org/10.1074/jbc.M101260200.
  • Kosaki A, Nelson J, Webster NJ. 1998. Identification of intron and exon sequences involved in alternative splicing of insulin receptor pre-mRNA. J Biol Chem 273:10331–10337. https://doi.org/10.1074/jbc.273.17.10331.
  • Glatz DC, Rujescu D, Tang Y, Berendt FJ, Hartmann AM, Faltraco F, Rosenberg C, Hulette C, Jellinger K, Hampel H, Riederer P, Moller HJ, Andreadis A, Henkel K, Stamm S. 2006. The alternative splicing of tau exon 10 and its regulatory proteins CLK2 and TRA2-BETA1 changes in sporadic Alzheimer's disease. J Neurochem 96:635–644. https://doi.org/10.1111/j.1471-4159.2005.03552.x.
  • Massiello A, Chalfant CE. 2006. SRp30a (ASF/SF2) regulates the alternative splicing of caspase-9 pre-mRNA and is required for ceramide-responsiveness. J Lipid Res 47:892–897. https://doi.org/10.1194/jlr.C600003-JLR200.
  • Apostolatos H, Apostolatos A, Vickers T, Watson JE, Song S, Vale F, Cooper DR, Sanchez-Ramos J, Patel NA. 2010. Vitamin A metabolite, all-trans-retinoic acid, mediates alternative splicing of protein kinase C deltaVIII (PKCdeltaVIII) isoform via splicing factor SC35. J Biol Chem 285:25987–25995. https://doi.org/10.1074/jbc.M110.100735.
  • Baralle FE, Giudice J. 2017. Alternative splicing as a regulator of development and tissue identity. Nat Rev Mol Cell Biol 18:437–451. https://doi.org/10.1038/nrm.2017.27.
  • Vernia S, Edwards YJ, Han MS, Cavanagh-Kyros J, Barrett T, Kim JK, Davis RJ. 2016. An alternative splicing program promotes adipose tissue thermogenesis. Elife 5:e17672. https://doi.org/10.7554/eLife.17672.
  • Romero A, Garcia-Garcia F, Lopez-Perolio I, Ruiz de Garibay G, Garcia-Saenz JA, Garre P, Ayllon P, Benito E, Dopazo J, Diaz-Rubio E, Caldes T, de la Hoya M. 2015. BRCA1 alternative splicing landscape in breast tissue samples. BMC Cancer 15:219. https://doi.org/10.1186/s12885-015-1145-9.
  • Aubol BE, Chakrabarti S, Ngo J, Shaffer J, Nolen B, Fu XD, Ghosh G, Adams JA. 2003. Processive phosphorylation of alternative splicing factor/splicing factor 2. Proc Natl Acad Sci U S A 100:12601–12606. https://doi.org/10.1073/pnas.1635129100.
  • Colwill K, Feng LL, Yeakley JM, Gish GD, Caceres JF, Pawson T, Fu XD. 1996. SRPK1 and Clk/Sty protein kinases show distinct substrate specificities for serine/arginine-rich splicing factors. J Biol Chem 271:24569–24575. https://doi.org/10.1074/jbc.271.40.24569.
  • Patel NA, Apostolatos HS, Mebert K, Chalfant CE, Watson JE, Pillay TS, Sparks J, Cooper DR. 2004. Insulin regulates protein kinase CbetaII alternative splicing in multiple target tissues: development of a hormonally responsive heterologous minigene. Mol Endocrinol 18:899–911. https://doi.org/10.1210/me.2003-0391.
  • Beil B, Screaton G, Stamm S. 1997. Molecular cloning of htra2-beta-1 and htra2-beta-2, two human homologs of tra-2 generated by alternative splicing. DNA Cell Biol 16:679–690. https://doi.org/10.1089/dna.1997.16.679.
  • Manley JL, Krainer AR. 2010. A rational nomenclature for serine/arginine-rich protein splicing factors (SR proteins). Genes Dev 24:1073–1074. https://doi.org/10.1101/gad.1934910.
  • Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvaud S, Flegel V, Fortier A, Gasteiger E, Grosdidier A, Hernandez C, Ioannidis V, Kuznetsov D, Liechti R, Moretti S, Mostaguir K, Redaschi N, Rossier G, Xenarios I, Stockinger H. 2012. ExPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603. https://doi.org/10.1093/nar/gks400.
  • Shanmugam M, Krett NL, Peters CA, Maizels ET, Murad FM, Kawakatsu H, Rosen ST, Hunzicker-Dunn M. 1998. Association of PKC delta and active Src in PMA-treated MCF-7 human breast cancer cells. Oncogene 16:1649–1654. https://doi.org/10.1038/sj.onc.1201684.
  • Sumandea MP, Rybin VO, Hinken AC, Wang C, Kobayashi T, Harleton E, Sievert G, Balke CW, Feinmark SJ, Solaro RJ, Steinberg SF. 2008. Tyrosine phosphorylation modifies protein kinase C delta-dependent phosphorylation of cardiac troponin I. J Biol Chem 283:22680–22689. https://doi.org/10.1074/jbc.M802396200.
  • Anantharam V, Kitazawa M, Wagner J, Kaul S, Kanthasamy AG. 2002. Caspase-3-dependent proteolytic cleavage of protein kinase Cdelta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl. J Neurosci 22:1738–1751. https://doi.org/10.1523/JNEUROSCI.22-05-01738.2002.
  • Longo KA, Kennell JA, Ochocinska MJ, Ross SE, Wright WS, MacDougald OA. 2002. Wnt signaling protects 3T3L1 preadipocytes from apoptosis through induction of insulin-like growth factors. J Biol Chem 277:38239–38244. https://doi.org/10.1074/jbc.M206402200.
  • Sparks R, Lui A, Bader D, Patel R, Murr M, Guida W, Fratti R, Patel NA. 2019. A specific small-molecule inhibitor of protein kinase CdeltaI activity improves metabolic dysfunction in human adipocytes from obese individuals. J Biol Chem 294:14896–14910. https://doi.org/10.1074/jbc.RA119.008777.
  • Kawaguchi T, Niino Y, Ohtaki H, Kikuyama S, Shioda S. 2006. New PKCdelta family members, PKCdeltaIV, deltaV, deltaVI, and deltaVII are specifically expressed in mouse testis. FEBS Lett 580:2458–2464. https://doi.org/10.1016/j.febslet.2006.03.084.
  • Ueyama T, Ren Y, Ohmori S, Sakai K, Tamaki N, Saito N. 2000. cDNA cloning of an alternative splicing variant of protein kinase C delta (PKC deltaIII), a new truncated form of PKCdelta, in rats. Biochem Biophys Res Commun 269:557–563. https://doi.org/10.1006/bbrc.2000.2331.
  • Patel NA, Song SS, Cooper DR. 2006. PKCdelta alternatively spliced isoforms modulate cellular apoptosis in retinoic acid-induced differentiation of human NT2 cells and mouse embryonic stem cells. Gene Expr 13:73–84. https://doi.org/10.3727/000000006783991890.
  • Jiang K, Apostolatos AH, Ghansah T, Watson JE, Vickers T, Cooper DR, Epling-Burnette PK, Patel NA. 2008. Identification of a novel antiapoptotic human protein kinase C delta isoform, PKCdeltaVIII in NT2 cells. Biochemistry 47:787–797. https://doi.org/10.1021/bi7019782.
  • Zhang A, Zhou N, Huang J, Liu Q, Fukuda K, Ma D, Lu Z, Bai C, Watabe K, Mo YY. 2013. The human long non-coding RNA-RoR is a p53 repressor in response to DNA damage. Cell Res 23:340–350. https://doi.org/10.1038/cr.2012.164.
  • Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A. 2007. A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genomics 8:39. https://doi.org/10.1186/1471-2164-8-39.
  • Hirose T, Virnicchi G, Tanigawa A, Naganuma T, Li R, Kimura H, Yokoi T, Nakagawa S, Benard M, Fox AH, Pierron G. 2014. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Mol Biol Cell 25:169–183. https://doi.org/10.1091/mbc.E13-09-0558.
  • Imamura K, Imamachi N, Akizuki G, Kumakura M, Kawaguchi A, Nagata K, Kato A, Kawaguchi Y, Sato H, Yoneda M, Kai C, Yada T, Suzuki Y, Yamada T, Ozawa T, Kaneki K, Inoue T, Kobayashi M, Kodama T, Wada Y, Sekimizu K, Akimitsu N. 2014. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell 53:393–406. https://doi.org/10.1016/j.molcel.2014.01.009.
  • Zhou X, Li X, Yu L, Wang R, Hua D, Shi C, Sun C, Luo W, Rao C, Jiang Z, Wang Q, Yu S. 2019. The RNA-binding protein SRSF1 is a key cell cycle regulator via stabilizing NEAT1 in glioma. Int J Biochem Cell Biol 113:75–86. https://doi.org/10.1016/j.biocel.2019.06.003.
  • Gernapudi R, Wolfson B, Zhang Y, Yao Y, Yang P, Asahara H, Zhou Q. 2016. MicroRNA 140 promotes expression of long noncoding RNA NEAT1 in adipogenesis. Mol Cell Biol 36:30–38. https://doi.org/10.1128/MCB.00702-15.
  • Reinbold CS, Forstner AJ, Hecker J, Fullerton JM, Hoffmann P, Hou L, Heilbronner U, Degenhardt F, Adli M, Akiyama K, Akula N, Ardau R, Arias B, Backlund L, Benabarre A, Bengesser S, Bhattacharjee AK, Biernacka JM, Birner A, Marie-Claire C, Cervantes P, Chen GB, Chen HC, Chillotti C, Clark SR, Colom F, Cousins DA, Cruceanu C, Czerski PM, Dayer A, Etain B, Falkai P, Frisen L, Gard S, Garnham JS, Goes FS, Grof P, Gruber O, Hashimoto R, Hauser J, Herms S, Jamain S, Jimenez E, Kahn JP, Kassem L, Kittel-Schneider S, Kliwicki S, Konig B, Kusumi I, Lackner N, et al.. 2018. Analysis of the influence of microRNAs in lithium response in bipolar disorder. Front Psychiatry 9:207. https://doi.org/10.3389/fpsyt.2018.00207.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.