30
Views
34
CrossRef citations to date
0
Altmetric
Article

Amino-Terminal Phosphorylation of Activation-Induced Cytidine Deaminase Suppresses c-myc/IgH Translocation

, , , , , , , , & show all
Pages 442-449 | Received 24 Mar 2010, Accepted 22 Nov 2010, Published online: 21 Mar 2023

REFERENCES

  • Aoufouchi, S., et al. 2008. Proteasomal degradation restricts the nuclear lifespan of AID. J. Exp. Med. 205:1357–1368.
  • Arroyo, J. D., and W. C. Hahn. 2005. Involvement of PP2A in viral and cellular transformation. Oncogene 24:7746–7755.
  • Basu, U., et al. 2005. The AID antibody diversification enzyme is regulated by protein kinase A phosphorylation. Nature 438:508–511.
  • Bransteitter, R., P. Pham, M. D. Scharff, and M. F. Goodman. 2003. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. U. S. A. 100:4102–4107.
  • Brar, S. S., M. Watson, and M. Diaz. 2004. Activation-induced cytosine deaminase (AID) is actively exported out of the nucleus but retained by the induction of DNA breaks. J. Biol. Chem. 279:26395–26401.
  • Chatterji, M., S. Unniraman, K. M. McBride, and D. G. Schatz. 2007. Role of activation-induced deaminase protein kinase A phosphorylation sites in Ig gene conversion and somatic hypermutation. J. Immunol. 179:5274–5280.
  • Chaudhuri, J., C. Khuong, and F. W. Alt. 2004. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 430:992–998.
  • Chaudhuri, J., et al. 2003. Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422:726–730.
  • Cheng, H. L., et al. 2009. Integrity of the AID serine-38 phosphorylation site is critical for class switch recombination and somatic hypermutation in mice. Proc. Natl. Acad. Sci. U. S. A. 106:2717–2722.
  • Cohen, P., S. Klumpp, and D. L. Schelling. 1989. An improved procedure for identifying and quantitating protein phosphatases in mammalian tissues. FEBS Lett. 250:596–600.
  • de Yebenes, V. G., et al. 2008. miR-181b negatively regulates activation-induced cytidine deaminase in B cells. J. Exp. Med. 205:2199–2206.
  • Dickerson, S. K., E. Market, E. Besmer, and F. N. Papavasiliou. 2003. AID mediates hypermutation by deaminating single stranded DNA. J. Exp. Med. 197:1291–1296.
  • Di Noia, J., and M. Neuberger. 2007. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 76:1–22.
  • Dorsett, Y., et al. 2008. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28:630–638.
  • Dorsett, Y., et al. 2007. A role for AID in chromosome translocations between c-myc and the IgH variable region. J. Exp. Med. 204:2225–2232.
  • Eichhorn, P. J., M. P. Creyghton, and R. Bernards. 2009. Protein phosphatase 2A regulatory subunits and cancer. Biochim. Biophys. Acta 1795:1–15.
  • Fugmann, S. D., A. I. Lee, P. E. Shockett, I. J. Villey, and D. G. Schatz. 2000. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu. Rev. Immunol. 18:495–527.
  • Ito, S., et al. 2004. Activation-induced cytidine deaminase shuttles between nucleus and cytoplasm like apolipoprotein B mRNA editing catalytic polypeptide 1. Proc. Natl. Acad. Sci. U. S. A. 101:1975–1980.
  • Jankovic, M., A. Nussenzweig, and M. C. Nussenzweig. 2007. Antigen receptor diversification and chromosome translocations. Nat. Immunol. 8:801–808.
  • Janssens, V., and J. Goris. 2001. Protein phosphatase 2A: a highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 353:417–439.
  • Janssens, V., J. Goris, and C. Van Hoof. 2005. PP2A: the expected tumor suppressor. Curr. Opin. Genet. Dev. 15:34–41.
  • Jaramillo-Babb, V. L., et al. 1996. Positive regulation of cdc2 gene activity by protein phosphatase type 2A. J. Biol. Chem. 271:5988–5992.
  • Jung, D., C. Giallourakis, R. Mostoslavsky, and F. W. Alt. 2006. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu. Rev. Immunol. 24:541–570.
  • Klemm, L., et al. 2009. The B cell mutator AID promotes B lymphoid blast crisis and drug resistance in chronic myeloid leukemia. Cancer Cell 16:232–245.
  • Kovalchuk, A. L., J. R. Muller, and S. Janz. 1997. Deletional remodeling of c-myc-deregulating chromosomal translocations. Oncogene 15:2369–2377.
  • Li, Y. M., C. Mackintosh, and J. E. Casida. 1993. Protein phosphatase 2A and its [3H]cantharidin/[3H]endothall thioanhydride binding site. Inhibitor specificity of cantharidin and ATP analogues. Biochem. Pharmacol. 46:1435–1443.
  • Liu, M., et al. 2008. Two levels of protection for the B cell genome during somatic hypermutation. Nature 451:841–845.
  • Liu, M., and D. G. Schatz. 2009. Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. 30:173–181.
  • McBride, K. M., V. Barreto, A. R. Ramiro, P. Stavropoulos, and M. C. Nussenzweig. 2004. Somatic hypermutation is limited by CRM1-dependent nuclear export of activation-induced deaminase. J. Exp. Med. 199:1235–1244.
  • McBride, K. M., et al. 2006. Regulation of hypermutation by activation-induced cytidine deaminase phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 103:8798–8803.
  • McBride, K. M., et al. 2008. Regulation of class switch recombination and somatic mutation by AID phosphorylation. J. Exp. Med. 205:2585–2594.
  • Mumby, M. 2007. PP2A: unveiling a reluctant tumor suppressor. Cell 130:21–24.
  • Muramatsu, M., et al. 2000. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102:553–563.
  • Muramatsu, M., et al. 1999. Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J. Biol. Chem. 274:18470–18476.
  • Nussenzweig, A., and M. C. Nussenzweig. Origin of chromosomal translocations in lymphoid cancer. Cell 141:27–38.
  • Pasqualucci, L., Y. Kitaura, H. Gu, and R. Dalla-Favera. 2006. PKA-mediated phosphorylation regulates the function of activation-induced deaminase (AID) in B cells. Proc. Natl. Acad. Sci. U. S. A. 103:395–400.
  • Pasqualucci, L., et al. 1998. BCL-6 mutations in normal germinal center B cells: evidence of somatic hypermutation acting outside Ig loci. Proc. Natl. Acad. Sci. U. S. A. 95:11816–11821.
  • Patenaude, A. M., et al. 2009. Active nuclear import and cytoplasmic retention of activation-induced deaminase. Nat. Struct. Mol. Biol. 16:517–527.
  • Pavri, R., et al. 2010. Activation-induced cytidine deaminase targets DNA at sites of RNA polymerase II stalling by interaction with Spt5. Cell 143:122–133.
  • Peled, J. U., et al. 2008. The biochemistry of somatic hypermutation. Annu. Rev. Immunol. 26:481–511.
  • Perrotti, D., and P. Neviani. 2008. Protein phosphatase 2A (PP2A), a drugable tumor suppressor in Ph1(+) leukemias. Cancer Metastasis Rev. 27:159–168.
  • Petersen-Mahrt, S. K., R. S. Harris, and M. S. Neuberger. 2002. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418:99–103.
  • Pham, P., et al. 2008. Impact of phosphorylation and phosphorylation-null mutants on the activity and deamination specificity of activation-induced cytidine deaminase. J. Biol. Chem. 283:17428–17439.
  • Rajewsky, K. 1996. Clonal selection and learning in the antibody system. Nature 381:751–758.
  • Ramiro, A., et al. 2007. The role of activation-induced deaminase in antibody diversification and chromosome translocations. Adv. Immunol. 94:75–107.
  • Ramiro, A. R., et al. 2006. Role of genomic instability and p53 in AID-induced c-myc-Igh translocations. Nature 440:105–109.
  • Ramiro, A. R., et al. 2004. AID is required for c-myc/IgH chromosome translocations in vivo. Cell 118:431–438.
  • Ramiro, A. R., P. Stavropoulos, M. Jankovic, and M. C. Nussenzweig. 2003. Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat. Immunol. 4:452–456.
  • Revy, P., et al. 2000. Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell 102:565–575.
  • Robbiani, D. F., et al. 2008. AID is required for the chromosomal breaks in c-myc that lead to c-myc/IgH translocations. Cell 135:1028–1038.
  • Robbiani, D. F., et al. 2009. AID produces DNA double-strand breaks in non-Ig genes and mature B cell lymphomas with reciprocal chromosome translocations. Mol. Cell 36:631–641.
  • Shen, H. M., A. Peters, B. Baron, X. Zhu, and U. Storb. 1998. Mutation of BCL-6 gene in normal B cells by the process of somatic hypermutation of Ig genes. Science 280:1750–1752.
  • Stavnezer, J., J. E. Guikema, and C. E. Schrader. 2008. Mechanism and regulation of class switch recombination. Annu. Rev. Immunol. 26:261–292.
  • Teng, G., et al. 2008. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28:621–629.
  • Teng, G., and F. N. Papavasiliou. 2007. Immunoglobulin somatic hypermutation. Annu. Rev. Genet. 41:107–120.
  • Virshup, D. M., and S. Shenolikar. 2009. From promiscuity to precision: protein phosphatases get a makeover. Mol. Cell 33:537–545.
  • Vuong, B. Q., et al. 2009. Specific recruitment of protein kinase A to the immunoglobulin locus regulates class-switch recombination. Nat. Immunol. 10:420–426.
  • Wang, M., Z. Yang, C. Rada, and M. S. Neuberger. 2009. AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat. Struct. Mol. Biol. 16:769–776.
  • Westermarck, J., and W. C. Hahn. 2008. Multiple pathways regulated by the tumor suppressor PP2A in transformation. Trends Mol. Med. 14:152–160.
  • Yoshikawa, K., et al. 2002. AID enzyme-induced hypermutation in an actively transcribed gene in fibroblasts. Science 296:2033–2036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.