53
Views
17
CrossRef citations to date
0
Altmetric
Article

PAK1 and CtBP1 Regulate the Coupling of Neuronal Activity to Muscle Chromatin and Gene Expression

, , , , , & show all
Pages 4110-4120 | Received 03 Apr 2015, Accepted 01 Sep 2015, Published online: 20 Mar 2023

REFERENCES

  • Burden SJ. 2011. SnapShot: neuromuscular junction. Cell 144:826–826.e1. http://dx.doi.org/10.1016/j.cell.2011.02.037.
  • Wu H, Xiong WC, Mei L. 2010. To build a synapse: signaling pathways in neuromuscular junction assembly. Development 137:1017–1033. http://dx.doi.org/10.1242/dev.038711.
  • Luo ZG, Wang Q, Zhou JZ, Wang J, Luo Z, Liu M, He X, Wynshaw-Boris A, Xiong WC, Lu B, Mei L. 2002. Regulation of AChR clustering by Dishevelled interacting with MuSK and PAK1. Neuron 35:489–505. http://dx.doi.org/10.1016/S0896-6273(02)00783-3.
  • Ravel-Chapuis A, Vandromme M, Thomas JL, Schaeffer L. 2007. Postsynaptic chromatin is under neural control at the neuromuscular junction. EMBO J 26:1117–1128. http://dx.doi.org/10.1038/sj.emboj.7601572.
  • Mejat A, Ramond F, Bassel-Duby R, Khochbin S, Olson EN, Schaeffer L. 2005. Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression. Nat Neurosci 8:313–321. http://dx.doi.org/10.1038/nn1408.
  • Moresi V, Williams AH, Meadows E, Flynn JM, Potthoff MJ, McAnally J, Shelton JM, Backs J, Klein WH, Richardson JA, Bassel-Duby R, Olson EN. 2010. Myogenin and class II HDACs control neurogenic muscle atrophy by inducing E3 ubiquitin ligases. Cell 143:35–45. http://dx.doi.org/10.1016/j.cell.2010.09.004.
  • Berghella L, De Angelis L, De Buysscher T, Mortazavi A, Biressi S, Forcales SV, Sirabella D, Cossu G, Wold BJ. 2008. A highly conserved molecular switch binds MSY-3 to regulate myogenin repression in postnatal muscle. Genes Dev 22:2125–2138. http://dx.doi.org/10.1101/gad.468508.
  • Tang H, Goldman D. 2006. Activity-dependent gene regulation in skeletal muscle is mediated by a histone deacetylase (HDAC)-Dach2-myogenin signal transduction cascade. Proc Natl Acad Sci U S A 103:16977–16982. http://dx.doi.org/10.1073/pnas.0601565103.
  • Tang H, Macpherson P, Marvin M, Meadows E, Klein WH, Yang XJ, Goldman D. 2009. An HDAC4/myogenin positive feedback loop coordinates denervation-dependent gene induction and suppression. Mol Biol Cell 20:1120–1131. http://dx.doi.org/10.1091/mbc.E08-07-0759.
  • Cruickshank MN, Besant P, Ulgiati D. 2010. The impact of histone posttranslational modifications on developmental gene regulation. Amino Acids 39:1087–1105. http://dx.doi.org/10.1007/s00726-010-0530-6.
  • Munshi A, Shafi G, Aliya N, Jyothy A. 2009. Histone modifications dictate specific biological readouts. J Genet Genomics 36:75–88. http://dx.doi.org/10.1016/S1673-8527(08)60094-6.
  • Cao Y, Yao Z, Sarkar D, Lawrence M, Sanchez GJ, Parker MH, MacQuarrie KL, Davison J, Morgan MT, Ruzzo WL, Gentleman RC, Tapscott SJ. 2010. Genome-wide MyoD binding in skeletal muscle cells: a potential for broad cellular reprogramming. Dev Cell 18:662–674. http://dx.doi.org/10.1016/j.devcel.2010.02.014.
  • Ho L, Crabtree GR. 2010. Chromatin remodeling during development. Nature 463:474–484. http://dx.doi.org/10.1038/nature08911.
  • Chinnadurai G. 2007. Transcriptional regulation by C-terminal binding proteins. Int J Biochem Cell Biol 39:1593–1607. http://dx.doi.org/10.1016/j.biocel.2007.01.025.
  • Kim JH, Cho EJ, Kim ST, Youn HD. 2005. CtBP represses p300-mediated transcriptional activation by direct association with its bromodomain. Nat Struct Mol Biol 12:423–428. http://dx.doi.org/10.1038/nsmb924.
  • Ray SK, Li HJ, Metzger E, Schule R, Leiter AB. 2014. CtBP and associated LSD1 are required for transcriptional activation by NeuroD1 in gastrointestinal endocrine cells. Mol Cell Biol 34:2308–2317. http://dx.doi.org/10.1128/MCB.01600-13.
  • Barnes CJ, Vadlamudi RK, Mishra SK, Jacobson RH, Li F, Kumar R. 2003. Functional inactivation of a transcriptional corepressor by a signaling kinase. Nat Struct Biol 10:622–628. http://dx.doi.org/10.1038/nsb957.
  • Hildebrand JD, Soriano P. 2002. Overlapping and unique roles for C-terminal binding protein 1 (CtBP1) and CtBP2 during mouse development. Mol Cell Biol 22:5296–5307. http://dx.doi.org/10.1128/MCB.22.15.5296-5307.2002.
  • Chinnadurai G. 2009. The transcriptional corepressor CtBP: a foe of multiple tumor suppressors. Cancer Res 69:731–734. http://dx.doi.org/10.1158/0008-5472.CAN-08-3349.
  • Duclert A, Piette J, Changeux JP. 1991. Influence of innervation of myogenic factors and acetylcholine receptor alpha-subunit mRNAs. Neuroreport 2:25–28. http://dx.doi.org/10.1097/00001756-199101000-00006.
  • Eftimie R, Brenner HR, Buonanno A. 1991. Myogenin and MyoD join a family of skeletal muscle genes regulated by electrical activity. Proc Natl Acad Sci U S A 88:1349–1353. http://dx.doi.org/10.1073/pnas.88.4.1349.
  • Witzemann V, Sakmann B. 1991. Differential regulation of MyoD and myogenin mRNA levels by nerve induced muscle activity. FEBS Lett 282:259–264. http://dx.doi.org/10.1016/0014-5793(91)80490-T.
  • Arias-Romero LE, Chernoff J. 2008. A tale of two Paks. Biol Cell 100:97–108. http://dx.doi.org/10.1042/BC20070109.
  • Lacazette E, Le Calvez S, Gajendran N, Brenner HR. 2003. A novel pathway for MuSK to induce key genes in neuromuscular synapse formation. J Cell Biol 161:727–736. http://dx.doi.org/10.1083/jcb.200210156.
  • Ching YP, Leong VY, Lee MF, Xu HT, Jin DY, Ng IO. 2007. P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res 67:3601–3608. http://dx.doi.org/10.1158/0008-5472.CAN-06-3994.
  • Park ER, Eblen ST, Catling AD. 2007. MEK1 activation by PAK: a novel mechanism. Cell Signal 19:1488–1496. http://dx.doi.org/10.1016/j.cellsig.2007.01.018.
  • Kreis P, Rousseau V, Thevenot E, Combeau G, Barnier JV. 2008. The four mammalian splice variants encoded by the p21-activated kinase 3 gene have different biological properties. J Neurochem 106:1184–1197. http://dx.doi.org/10.1111/j.1471-4159.2008.05474.x.
  • Smith SD, Jaffer ZM, Chernoff J, Ridley AJ. 2008. PAK1-mediated activation of ERK1/2 regulates lamellipodial dynamics. J Cell Sci 121:3729–3736. http://dx.doi.org/10.1242/jcs.027680.
  • Kreis P, Barnier JV. 2009. PAK signalling in neuronal physiology. Cell Signal 21:384–393. http://dx.doi.org/10.1016/j.cellsig.2008.11.001.
  • Deconinck AE, Potter AC, Tinsley JM, Wood SJ, Vater R, Young C, Metzinger L, Vincent A, Slater CR, Davies KE. 1997. Postsynaptic abnormalities at the neuromuscular junctions of utrophin-deficient mice. J Cell Biol 136:883–894. http://dx.doi.org/10.1083/jcb.136.4.883.
  • Mitsui T, Kawajiri M, Kunishige M, Endo T, Akaike M, Aki K, Matsumoto T. 2000. Functional association between nicotinic acetylcholine receptor and sarcomeric proteins via actin and desmin filaments. J Cell Biochem 77:584–595. http://dx.doi.org/10.1002/(SICI)1097-4644(20000615)77:4<584::AID-JCB6>3.0.CO;2-U.
  • Pato C, Stetzkowski-Marden F, Gaus K, Recouvreur M, Cartaud A, Cartaud J. 2008. Role of lipid rafts in agrin-elicited acetylcholine receptor clustering. Chem Biol Interact 175:64–67. http://dx.doi.org/10.1016/j.cbi.2008.03.020.
  • Sanes JR, Lichtman JW. 2001. Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791–805. http://dx.doi.org/10.1038/35097557.
  • Shi L, Butt B, Ip FC, Dai Y, Jiang L, Yung WH, Greenberg ME, Fu AK, Ip NY. 2010. Ephexin1 is required for structural maturation and neurotransmission at the neuromuscular junction. Neuron 65:204–216. http://dx.doi.org/10.1016/j.neuron.2010.01.012.
  • Weston C, Gordon C, Teressa G, Hod E, Ren XD, Prives J. 2003. Cooperative regulation by Rac and Rho of agrin-induced acetylcholine receptor clustering in muscle cells. J Biol Chem 278:6450–6455. http://dx.doi.org/10.1074/jbc.M210249200.
  • Wells CM, Jones GE. 2010. The emerging importance of group II PAKs. Biochem J 425:465–473. http://dx.doi.org/10.1042/BJ20091173.
  • Liberali P, Kakkonen E, Turacchio G, Valente C, Spaar A, Perinetti G, Bockmann RA, Corda D, Colanzi A, Marjomaki V, Luini A. 2008. The closure of Pak1-dependent macropinosomes requires the phosphorylation of CtBP1/BARS. EMBO J 27:970–981. http://dx.doi.org/10.1038/emboj.2008.59.
  • Valente C, Turacchio G, Mariggio S, Pagliuso A, Gaibisso R, Di Tullio G, Santoro M, Formiggini F, Spano S, Piccini D, Polishchuk RS, Colanzi A, Luini A, Corda D. 2012. A 14-3-3γ dimer-based scaffold bridges CtBP1-S/BARS to PI(4)KIIIβ to regulate post-Golgi carrier formation. Nat Cell Biol 14:343–354. http://dx.doi.org/10.1038/ncb2445.
  • McKinsey TA, Zhang CL, Olson EN. 2002. Signaling chromatin to make muscle. Curr Opin Cell Biol 14:763–772. http://dx.doi.org/10.1016/S0955-0674(02)00389-7.
  • Zhang CL, McKinsey TA, Lu JR, Olson EN. 2001. Association of COOH-terminal-binding protein (CtBP) and MEF2-interacting transcription repressor (MITR) contributes to transcriptional repression of the MEF2 transcription factor. J Biol Chem 276:35–39. http://dx.doi.org/10.1074/jbc.M007364200.
  • Angelelli C, Magli A, Ferrari D, Ganassi M, Matafora V, Parise F, Razzini G, Bachi A, Ferrari S, Molinari S. 2008. Differentiation-dependent lysine 4 acetylation enhances MEF2C binding to DNA in skeletal muscle cells. Nucleic Acids Res 36:915–928. http://dx.doi.org/10.1093/nar/gkm1114.
  • Sartorelli V, Huang J, Hamamori Y, Kedes L. 1997. Molecular mechanisms of myogenic coactivation by p300: direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol Cell Biol 17:1010–1026.
  • Serra C, Palacios D, Mozzetta C, Forcales SV, Morantte I, Ripani M, Jones DR, Du K, Jhala US, Simone C, Puri PL. 2007. Functional interdependence at the chromatin level between the MKK6/p38 and IGF1/PI3K/AKT pathways during muscle differentiation. Mol Cell 28:200–213. http://dx.doi.org/10.1016/j.molcel.2007.08.021.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.