23
Views
21
CrossRef citations to date
0
Altmetric
Article

Wobble Splicing Reveals the Role of the Branch Point Sequence-to-NAGNAG Region in 3′ Tandem Splice Site Selection

, &
Pages 5835-5848 | Received 28 Feb 2007, Accepted 01 Jun 2007, Published online: 01 Apr 2023

REFERENCES

  • Akerman, M., and Y. Mandel-Gutfreund. 2006. Alternative splicing regulation at tandem 3′ splice sites. Nucleic Acids Res. 34:23–31.
  • Berglund, J. A., N. Abovich, and M. Rosbash. 1998. A cooperative interaction between U2AF65 and mBBP/SF1 facilitates branchpoint region recognition. Genes Dev. 12:858–867.
  • Black, D. L. 2003. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72:291–336.
  • Brett, D., J. Hanke, G. Lehmann, S. Haase, S. Delbruck, S. Krueger, J. Reich, and P. Bork. 2000. EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett. 474:83–86.
  • Brow, D. A. 2002. Allosteric cascade of spliceosome activation. Annu. Rev. Genet. 36:333–360.
  • Cartegni, L., S. L. Chew, and A. R. Krainer. 2002. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat. Rev. Genet. 3:285–298.
  • Chen, S., K. Anderson, and M. J. Moore. 2000. Evidence for a linear search in bimolecular 3′ splice site AG selection. Proc. Natl. Acad. Sci. USA 97:593–598.
  • Chern, T. M., E. van Nimwegen, C. Kai, J. Kawai, P. Carninci, Y. Hayashizaki, and M. Zavolan. 2006. A simple physical model predicts small exon length variations. PLoS Genet. 2:e45.
  • Chua, K., and R. Reed. 2001. An upstream AG determines whether a downstream AG is selected during catalytic step II of splicing. Mol. Cell. Biol. 21:1509–1514.
  • Condorelli, G., R. Bueno, and R. J. Smith. 1994. Two alternatively spliced forms of the human insulin-like growth factor I receptor have distinct biological activities and internalization kinetics. J. Biol. Chem. 269:8510–8516.
  • Englert, C., M. Vidal, S. Maheswaran, Y. Ge, R. M. Ezzell, K. J. Isselbacher, and D. A. Haber. 1995. Truncated WT1 mutants alter the subnuclear localization of the wild-type protein. Proc. Natl. Acad. Sci. USA 92:11960–11964.
  • Fox-Walsh, K. L., Y. Dou, B. J. Lam, S. P. Hung, P. F. Baldi, and K. J. Hertel. 2005. The architecture of pre-mRNAs affects mechanisms of splice-site pairing. Proc. Natl. Acad. Sci. USA 102:16176–16181.
  • Hiller, M., K. Huse, K. Szafranski, N. Jahn, J. Hampe, S. Schreiber, R. Backofen, and M. Platzer. 2006. Single-nucleotide polymorphisms in NAGNAG acceptors are highly predictive for variations of alternative splicing. Am. J. Hum. Genet. 78:291–302.
  • Hiller, M., K. Huse, K. Szafranski, N. Jahn, J. Hampe, S. Schreiber, R. Backofen, and M. Platzer. 2004. Widespread occurrence of alternative splicing at NAGNAG acceptors contributes to proteome plasticity. Nat. Genet. 36:1255–1257.
  • Jurica, M. S., and M. J. Moore. 2003. Pre-mRNA splicing: awash in a sea of proteins. Mol. Cell 12:5–14.
  • Kan, Z., E. C. Rouchka, W. R. Gish, and D. J. States. 2001. Gene structure prediction and alternative splicing analysis using genomically aligned ESTs. Genome Res. 11:889–900.
  • Kao, H. W., H. C. Chen, C. W. Wu, and W. C. Lin. 2003. Tyrosine-kinase expression profiles in human gastric cancer cell lines and their modulations with retinoic acids. Br. J. Cancer 88:1058–1064.
  • Kay, P. H., and M. R. Ziman. 1999. Alternate Pax7 paired box transcripts which include a trinucleotide or a hexanucleotide are generated by use of alternate 3′ intronic splice sites which are not utilized in the ancestral homologue. Gene 230:55–60.
  • Kol, G., G. Lev-Maor, and G. Ast. 2005. Human-mouse comparative analysis reveals that branch-site plasticity contributes to splicing regulation. Hum. Mol. Genet. 14:1559–1568.
  • Kralovicova, J., S. Houngninou-Molango, A. Kramer, and I. Vorechovsky. 2004. Branch site haplotypes that control alternative splicing. Hum. Mol. Genet. 13:3189–3202.
  • Kralovicova, J., H. Lei, and I. Vorechovsky. 2006. Phenotypic consequences of branch point substitutions. Hum. Mutat. 27:803–813.
  • Lai, C. H., L. Y. Hu, and W. C. Lin. 2006. Single amino-acid InDel variants generated by alternative tandem splice-donor and -acceptor selection. Biochem. Biophys. Res. Commun. 342:197–205.
  • Liang, X. H., A. Haritan, S. Uliel, and S. Michaeli. 2003. trans and cis splicing in trypanosomatids: mechanism, factors, and regulation. Eukaryot. Cell 2:830–840.
  • Lopez, A. J. 1998. Alternative splicing of pre-mRNA: developmental consequences and mechanisms of regulation. Annu. Rev. Genet. 32:279–305.
  • Lopez-Bigas, N., B. Audit, C. Ouzounis, G. Parra, and R. Guigo. 2005. Are splicing mutations the most frequent cause of hereditary disease? FEBS Lett. 579:1900–1903.
  • Maugeri, A., M. A. van Driel, D. J. van de Pol, B. J. Klevering, F. J. van Haren, N. Tijmes, A. A. Bergen, K. Rohrschneider, A. Blankenagel, A. J. Pinckers, N. Dahl, H. G. Brunner, A. F. Deutman, C. B. Hoyng, and F. P. Cremers. 1999. The 2588G→C mutation in the ABCR gene is a mild frequent founder mutation in the Western European population and allows the classification of ABCR mutations in patients with Stargardt disease. Am. J. Hum. Genet. 64:1024–1035.
  • Rappsilber, J., U. Ryder, A. I. Lamond, and M. Mann. 2002. Large-scale proteomic analysis of the human spliceosome. Genome Res. 12:1231–1245.
  • Reed, R. 2000. Mechanisms of fidelity in pre-mRNA splicing. Curr. Opin. Cell Biol. 12:340–345.
  • Reed, R., and T. Maniatis. 1988. The role of the mammalian branchpoint sequence in pre-mRNA splicing. Genes Dev. 2:1268–1276.
  • Rio, D. C. 1993. Splicing of pre-mRNA: mechanism, regulation and role in development. Curr. Opin. Genet. Dev. 3:574–584.
  • Ruskin, B., J. M. Greene, and M. R. Green. 1985. Cryptic branch point activation allows accurate in vitro splicing of human beta-globin intron mutants. Cell 41:833–844.
  • Smith, C. W., T. T. Chu, and B. Nadal-Ginard. 1993. Scanning and competition between AGs are involved in 3′ splice site selection in mammalian introns. Mol. Cell. Biol. 13:4939–4952.
  • Smith, C. W., E. B. Porro, J. G. Patton, and B. Nadal-Ginard. 1989. Scanning from an independently specified branch point defines the 3′ splice site of mammalian introns. Nature 342:243–247.
  • Tadokoro, K., M. Yamazaki-Inoue, M. Tachibana, M. Fujishiro, K. Nagao, M. Toyoda, M. Ozaki, M. Ono, N. Miki, T. Miyashita, and M. Yamada. 2005. Frequent occurrence of protein isoforms with or without a single amino acid residue by subtle alternative splicing: the case of Gln in DRPLA affects subcellular localization of the products. J. Hum. Genet. 50:382–394.
  • Tsai, K. W., and W. C. Lin. 2006. Quantitative analysis of wobble splicing indicates that it is not tissue specific. Genomics 88:855–864.
  • Unoki, M., J. C. Shen, Z. M. Zheng, and C. C. Harris. 2006. Novel splice variants of ING4 and their possible roles in the regulation of cell growth and motility. J. Biol. Chem. 281:34677–34686.
  • Vogan, K. J., D. A. Underhill, and P. Gros. 1996. An alternative splicing event in the Pax-3 paired domain identifies the linker region as a key determinant of paired domain DNA-binding activity. Mol. Cell. Biol. 16:6677–6686.
  • Wen, F., F. Li, H. Xia, X. Lu, X. Zhang, and Y. Li. 2004. The impact of very short alternative splicing on protein structures and functions in the human genome. Trends Genet. 20:232–236.
  • Wu, S., C. M. Romfo, T. W. Nilsen, and M. R. Green. 1999. Functional recognition of the 3′ splice site AG by the splicing factor U2AF35. Nature 402:832–835.
  • Zavolan, M., S. Kondo, C. Schonbach, J. Adachi, D. A. Hume, Y. Hayashizaki, and T. Gaasterland. 2003. Impact of alternative initiation, splicing, and termination on the diversity of the mRNA transcripts encoded by the mouse transcriptome. Genome Res. 13:1290–1300.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.