70
Views
50
CrossRef citations to date
0
Altmetric
Article

Disruption of Wnt/β-Catenin Signaling and Telomeric Shortening Are Inextricable Consequences of Tankyrase Inhibition in Human Cells

, , , , , , , , , , , , , & show all
Pages 2425-2435 | Received 15 Apr 2015, Accepted 28 Apr 2015, Published online: 20 Mar 2023

REFERENCES

  • Lehtio L, Chi NW, Krauss S. 2013. Tankyrases as drug targets. FEBS J 280:3576–3593. http://dx.doi.org/10.1111/febs.12320.
  • Riffell JL, Lord CJ, Ashworth A. 2012. Tankyrase-targeted therapeutics: expanding opportunities in the PARP family. Nat Rev Drug Discov 11:923–936. http://dx.doi.org/10.1038/nrd3868.
  • Cook BD, Dynek JN, Chang W, Shostak G, Smith S. 2002. Role for the related poly(ADP-ribose) polymerases tankyrase 1 and 2 at human telomeres. Mol Cell Biol 22:332–342. http://dx.doi.org/10.1128/MCB.22.1.332-342.2002.
  • Smith S, Giriat I, Schmitt A, de Lange T. 1998. Tankyrase, a poly(ADP-ribose) polymerase at human telomeres. Science 282:1484–1487. http://dx.doi.org/10.1126/science.282.5393.1484.
  • Chiang YJ, Hsiao SJ, Yver D, Cushman SW, Tessarollo L, Smith S, Hodes RJ. 2008. Tankyrase 1 and tankyrase 2 are essential but redundant for mouse embryonic development. PLoS One 3:e2639. http://dx.doi.org/10.1371/journal.pone.0002639.
  • Huang SM, Mishina YM, Liu S, Cheung A, Stegmeier F, Michaud GA, Charlat O, Wiellette E, Zhang Y, Wiessner S, Hild M, Shi X, Wilson CJ, Mickanin C, Myer V, Fazal A, Tomlinson R, Serluca F, Shao W, Cheng H, Shultz M, Rau C, Schirle M, Schlegl J, Ghidelli S, Fawell S, Lu C, Curtis D, Kirschner MW, Lengauer C, Finan PM, Tallarico JA, Bouwmeester T, Porter JA, Bauer A, Cong F. 2009. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature 461:614–620. http://dx.doi.org/10.1038/nature08356.
  • Dodge ME, Lum L. 2011. Drugging the cancer stem cell compartment: lessons learned from the hedgehog and Wnt signal transduction pathways. Annu Rev Pharmacol Toxicol 51:289–310. http://dx.doi.org/10.1146/annurev-pharmtox-010510-100558.
  • Chang W, Dynek JN, Smith S. 2005. NuMA is a major acceptor of poly(ADP-ribosyl)ation by tankyrase 1 in mitosis. Biochem J 391:177–184. http://dx.doi.org/10.1042/BJ20050885.
  • Cho-Park PF, Steller H. 2013. Proteasome regulation by ADP-ribosylation. Cell 153:614–627. http://dx.doi.org/10.1016/j.cell.2013.03.040.
  • Guettler S, LaRose J, Petsalaki E, Gish G, Scotter A, Pawson T, Rottapel R, Sicheri F. 2011. Structural basis and sequence rules for substrate recognition by Tankyrase explain the basis for cherubism disease. Cell 147:1340–1354. http://dx.doi.org/10.1016/j.cell.2011.10.046.
  • Ozaki Y, Matsui H, Asou H, Nagamachi A, Aki D, Honda H, Yasunaga S, Takihara Y, Yamamoto T, Izumi S, Ohsugi M, Inaba T. 2012. Poly-ADP ribosylation of Miki by tankyrase-1 promotes centrosome maturation. Mol Cell 47:694–706. http://dx.doi.org/10.1016/j.molcel.2012.06.033.
  • Hayashi MT, Cesare AJ, Fitzpatrick JA, Lazzerini-Denchi E, Karlseder J. 2012. A telomere-dependent DNA damage checkpoint induced by prolonged mitotic arrest. Nat Struct Mol Biol 19:387–394. http://dx.doi.org/10.1038/nsmb.2245.
  • Sarek G, Vannier JB, Panier S, Petrini JH, Boulton SJ. 2015. TRF2 recruits RTEL1 to telomeres in S phase to promote T-loop unwinding. Mol Cell 57:622–635. http://dx.doi.org/10.1016/j.molcel.2014.12.024.
  • Zimmermann M, Kibe T, Kabir S, de Lange T. 2014. TRF1 negotiates TTAGGG repeat-associated replication problems by recruiting the BLM helicase and the TPP1/POT1 repressor of ATR signaling. Genes Dev 28:2477–2491. http://dx.doi.org/10.1101/gad.251611.114.
  • Kim MK, Smith S. 2014. Persistent telomere cohesion triggers a prolonged anaphase. Mol Biol Cell 25:30–40. http://dx.doi.org/10.1091/mbc.E13-08-0479.
  • Chen B, Dodge ME, Tang W, Lu J, Ma Z, Fan CW, Wei S, Hao W, Kilgore J, Williams NS, Roth MG, Amatruda JF, Chen C, Lum L. 2009. Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer. Nat Chem Biol 5:100–107. http://dx.doi.org/10.1038/nchembio.137.
  • Lehtio L, Collins R, van den Berg S, Johansson A, Dahlgren LG, Hammarstrom M, Helleday T, Holmberg-Schiavone L, Karlberg T, Weigelt J. 2008. Zinc binding catalytic domain of human tankyrase 1. J Mol Biol 379:136–145. http://dx.doi.org/10.1016/j.jmb.2008.03.058.
  • McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J Appl Crystallogr 40:658–674. http://dx.doi.org/10.1107/S0021889807021206.
  • Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC. 2002. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D 58:1948–1954. http://dx.doi.org/10.1107/S0907444902016657.
  • Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr D 60:2126–2132. http://dx.doi.org/10.1107/S0907444904019158.
  • Chen VB, Arendall WB, III, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. 2010. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr D 66:12–21. http://dx.doi.org/10.1107/S0907444909042073.
  • Lum L, Reid MS, Blobel CP. 1998. Intracellular maturation of the mouse metalloprotease disintegrin MDC15. J Biol Chem 273:26236–26247. http://dx.doi.org/10.1074/jbc.273.40.26236.
  • Ludlow AT, Robin JD, Sayed M, Litterst CM, Shelton DN, Shay JW, Wright WE. 2014. Quantitative telomerase enzyme activity determination using droplet digital PCR with single cell resolution. Nucleic Acids Res 42:e104. http://dx.doi.org/10.1093/nar/gku439.
  • Huang H, He X. 2008. Wnt/beta-catenin signaling: new (and old) players and new insights. Curr Opin Cell Biol 20:119–125. http://dx.doi.org/10.1016/j.ceb.2008.01.009.
  • Narwal M, Venkannagari H, Lehtio L. 2012. Structural basis of selective inhibition of human tankyrases. J Med Chem 55:1360–1367. http://dx.doi.org/10.1021/jm201510p.
  • Gunaydin H, Gu Y, Huang X. 2012. Novel binding mode of a potent and selective tankyrase inhibitor. PLoS One 7:e33740. http://dx.doi.org/10.1371/journal.pone.0033740.
  • Wahlberg E, Karlberg T, Kouznetsova E, Markova N, Macchiarulo A, Thorsell AG, Pol E, Frostell A, Ekblad T, Oncu D, Kull B, Robertson GM, Pellicciari R, Schuler H, Weigelt J. 2012. Family-wide chemical profiling and structural analysis of PARP and tankyrase inhibitors. Nat Biotechnol 30:283–288. http://dx.doi.org/10.1038/nbt.2121.
  • Palm W, de Lange T. 2008. How shelterin protects mammalian telomeres. Annu Rev Genet 42:301–334. http://dx.doi.org/10.1146/annurev.genet.41.110306.130350.
  • Shay JW, Wright WE. 2011. Role of telomeres and telomerase in cancer. Semin Cancer Biol 21:349–353. http://dx.doi.org/10.1016/j.semcancer.2011.10.001.
  • Takai H, Smogorzewska A, de Lange T. 2003. DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556. http://dx.doi.org/10.1016/S0960-9822(03)00542-6.
  • Gonzalez-Sancho JM, Brennan KR, Castelo-Soccio LA, Brown AM. 2004. Wnt proteins induce dishevelled phosphorylation via an LRP5/6-independent mechanism, irrespective of their ability to stabilize beta-catenin. Mol Cell Biol 24:4757–4768. http://dx.doi.org/10.1128/MCB.24.11.4757-4768.2004.
  • Jacob LS, Wu X, Dodge ME, Fan CW, Kulak O, Chen B, Tang W, Wang B, Amatruda JF, Lum L. 2011. Genome-wide RNAi screen reveals disease-associated genes that are common to Hedgehog and Wnt signaling. Sci Signal 4:ra4. http://dx.doi.org/10.1126/scisignal.2001225.
  • Chang W, Dynek JN, Smith S. 2003. TRF1 is degraded by ubiquitin-mediated proteolysis after release from telomeres. Genes Dev 17:1328–1333. http://dx.doi.org/10.1101/gad.1077103.
  • Seimiya H, Muramatsu Y, Ohishi T, Tsuruo T. 2005. Tankyrase 1 as a target for telomere-directed molecular cancer therapeutics. Cancer Cell 7:25–37. http://dx.doi.org/10.1016/j.ccr.2004.11.021.
  • Tian X, Hou W, Bai S, Fan J, Tong H, Bai Y. 2014. XAV939 promotes apoptosis in a neuroblastoma cell line via telomere shortening. Oncol Rep 32:1999–2006. http://dx.doi.org/10.3892/or.2014.3460.
  • Lum L, Clevers H. 2012. Cell biology. The unusual case of Porcupine. Science 337:922–923. http://dx.doi.org/10.1126/science.1228179.
  • Diala I, Wagner N, Magdinier F, Shkreli M, Sirakov M, Bauwens S, Schluth-Bolard C, Simonet T, Renault VM, Ye J, Djerbi A, Pineau P, Choi J, Artandi S, Dejean A, Plateroti M, Gilson E. 2013. Telomere protection and TRF2 expression are enhanced by the canonical Wnt signalling pathway. EMBO Rep 14:356–363. http://dx.doi.org/10.1038/embor.2013.16.
  • Hoffmeyer K, Raggioli A, Rudloff S, Anton R, Hierholzer A, Del Valle I, Hein K, Vogt R, Kemler R. 2012. Wnt/beta-catenin signaling regulates telomerase in stem cells and cancer cells. Science 336:1549–1554. http://dx.doi.org/10.1126/science.1218370.
  • Zhang Y, Toh L, Lau P, Wang X. 2012. Human telomerase reverse transcriptase (hTERT) is a novel target of the Wnt/beta-catenin pathway in human cancer. J Biol Chem 287:32494–32511. http://dx.doi.org/10.1074/jbc.M112.368282.
  • Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF, Gui L, White ES, Niklason LE. 2013. Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest 123:4950–4962. http://dx.doi.org/10.1172/JCI68793.
  • Gonzalez R, Lee JW, Schultz PG. 2011. Stepwise chemically induced cardiomyocyte specification of human embryonic stem cells. Angew Chem Int Ed Engl 50:11181–11185. http://dx.doi.org/10.1002/anie.201103909.
  • Huang SX, Islam MN, O'Neill J, Hu Z, Yang YG, Chen YW, Mumau M, Green MD, Vunjak-Novakovic G, Bhattacharya J, Snoeck HW. 2014. Efficient generation of lung and airway epithelial cells from human pluripotent stem cells. Nat Biotechnol 32:84–91. http://dx.doi.org/10.1038/nbt.2754.
  • Lian X, Zhang J, Azarin SM, Zhu K, Hazeltine LB, Bao X, Hsiao C, Kamp TJ, Palecek SP. 2013. Directed cardiomyocyte differentiation from human pluripotent stem cells by modulating Wnt/beta-catenin signaling under fully defined conditions. Nat Protoc 8:162–175. http://dx.doi.org/10.1038/nprot.2012.150.
  • Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y. 2012. Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10:771–785. http://dx.doi.org/10.1016/j.stem.2012.05.009.
  • Narytnyk A, Verdon B, Loughney A, Sweeney M, Clewes O, Taggart MJ, Sieber-Blum M. 2014. Differentiation of human epidermal neural crest stem cells (hEPI-NCSC) into virtually homogenous populations of dopaminergic neurons. Stem Cell Rev 10:316–326. http://dx.doi.org/10.1007/s12015-013-9493-9.
  • Ren Y, Lee MY, Schliffke S, Paavola J, Amos PJ, Ge X, Ye M, Zhu S, Senyei G, Lum L, Ehrlich BE, Qyang Y. 2011. Small molecule Wnt inhibitors enhance the efficiency of BMP-4-directed cardiac differentiation of human pluripotent stem cells. J Mol Cell Cardiol 51:280–287. http://dx.doi.org/10.1016/j.yjmcc.2011.04.012.
  • Wang H, Hao J, Hong CC. 2011. Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/beta-catenin signaling. ACS chemical biology 6:192–197. http://dx.doi.org/10.1021/cb100323z.
  • Williams SCP. 2013. No end in sight for telomerase-targeted cancer drugs. Nat Med 19:6. http://dx.doi.org/10.1038/nm0113-6.
  • Thompson PA, Drissi R, Muscal JA, Panditharatna E, Fouladi M, Ingle AM, Ahern CH, Reid JM, Lin T, Weigel BJ, Blaney SM. 2013. A phase I trial of imetelstat in children with refractory or recurrent solid tumors: a Children's Oncology Group Phase I Consortium Study (ADVL1112). Clin Cancer Res 19:6578–6584. http://dx.doi.org/10.1158/1078-0432.CCR-13-1117.
  • Cerone MA, Burgess DJ, Naceur-Lombardelli C, Lord CJ, Ashworth A. 2011. High-throughput RNAi screening reveals novel regulators of telomerase. Cancer Res 71:3328–3340. http://dx.doi.org/10.1158/0008-5472.CAN-10-2734.
  • Haikarainen T, Venkannagari H, Narwal M, Obaji E, Lee HW, Nkizinkiko Y, Lehtio L. 2013. Structural basis and selectivity of tankyrase inhibition by a Wnt signaling inhibitor WIKI4. PLoS One 8:e65404. http://dx.doi.org/10.1371/journal.pone.0065404.
  • Ramsay AJ, Quesada V, Foronda M, Conde L, Martinez-Trillos A, Villamor N, Rodriguez D, Kwarciak A, Garabaya C, Gallardo M, Lopez-Guerra M, Lopez-Guillermo A, Puente XS, Blasco MA, Campo E, Lopez-Otin C. 2013. POT1 mutations cause telomere dysfunction in chronic lymphocytic leukemia. Nat Genet 45:526–530. http://dx.doi.org/10.1038/ng.2584.
  • Robles-Espinoza CD, Harland M, Ramsay AJ, Aoude LG, Quesada V, Ding Z, Pooley KA, Pritchard AL, Tiffen JC, Petljak M, Palmer JM, Symmons J, Johansson P, Stark MS, Gartside MG, Snowden H, Montgomery GW, Martin NG, Liu JZ, Choi J, Makowski M, Brown KM, Dunning AM, Keane TM, Lopez-Otin C, Gruis NA, Hayward NK, Bishop DT, Newton-Bishop JA, Adams DJ. 2014. POT1 loss-of-function variants predispose to familial melanoma. Nat Genet 46:478–481. http://dx.doi.org/10.1038/ng.2947.
  • Shi J, Yang XR, Ballew B, Rotunno M, Calista D, Fargnoli MC, Ghiorzo P, Bressac-de Paillerets B, Nagore E, Avril MF, Caporaso NE, McMaster ML, Cullen M, Wang Z, Zhang X, Bruno W, Pastorino L, Queirolo P, Banuls-Roca J, Garcia-Casado Z, Vaysse A, Mohamdi H, Riazalhosseini Y, Foglio M, Jouenne F, Hua X, Hyland PL, Yin J, Vallabhaneni H, Chai W, Minghetti P, Pellegrini C, Ravichandran S, Eggermont A, Lathrop M, Peris K, Scarra GB, Landi G, Savage SA, Sampson JN, He J, Yeager M, Goldin LR, Demenais F, Chanock SJ, Tucker MA, Goldstein AM, Liu Y, Landi MT. 2014. Rare missense variants in POT1 predispose to familial cutaneous malignant melanoma. Nat Genet 46:482–486. http://dx.doi.org/10.1038/ng.2941.
  • Horn S, Figl A, Rachakonda PS, Fischer C, Sucker A, Gast A, Kadel S, Moll I, Nagore E, Hemminki K, Schadendorf D, Kumar R. 2013. TERT promoter mutations in familial and sporadic melanoma. Science 339:959–961. http://dx.doi.org/10.1126/science.1230062.
  • Borah S, Xi L, Zaug AJ, Powell NM, Dancik GM, Cohen SB, Costello JC, Theodorescu D, Cech TR. 2015. Cancer TERT promoter mutations and telomerase reactivation in urothelial cancer. Science 347:1006–1010. http://dx.doi.org/10.1126/science.1260200.
  • Walsh KM, Codd V, Smirnov IV, Rice T, Decker PA, Hansen HM, Kollmeyer T, Kosel ML, Molinaro AM, McCoy LS, Bracci PM, Cabriga BS, Pekmezci M, Zheng S, Wiemels JL, Pico AR, Tihan T, Berger MS, Chang SM, Prados MD, Lachance DH, O'Neill BP, Sicotte H, Eckel-Passow JE, van der Harst P, Wiencke JK, Samani NJ, Jenkins RB, Wrensch MR. 2014. Variants near TERT and TERC influencing telomere length are associated with high-grade glioma risk. Nat Genet 46:731–735. http://dx.doi.org/10.1038/ng.3004.
  • Scholer-Dahirel A, Schlabach MR, Loo A, Bagdasarian L, Meyer R, Guo R, Woolfenden S, Yu KK, Markovits J, Killary K, Sonkin D, Yao YM, Warmuth M, Sellers WR, Schlegel R, Stegmeier F, Mosher RE, McLaughlin ME. 2011. Maintenance of adenomatous polyposis coli (APC)-mutant colorectal cancer is dependent on Wnt/beta-catenin signaling. Proc Natl Acad Sci U S A 108:17135–17140. http://dx.doi.org/10.1073/pnas.1104182108.
  • Munoz P, Blanco R, de Carcer G, Schoeftner S, Benetti R, Flores JM, Malumbres M, Blasco MA. 2009. TRF1 controls telomere length and mitotic fidelity in epithelial homeostasis. Mol Cell Biol 29:1608–1625. http://dx.doi.org/10.1128/MCB.01339-08.
  • Ohki R, Ishikawa F. 2004. Telomere-bound TRF1 and TRF2 stall the replication fork at telomeric repeats. Nucleic Acids Res 32:1627–1637. http://dx.doi.org/10.1093/nar/gkh309.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.