352
Views
2
CrossRef citations to date
0
Altmetric
Research Article

G-Alpha Subunit Abundance and Activity Differentially Regulate β-Catenin Signaling

, ORCID Icon, & ORCID Icon
Article: e00422-18 | Received 24 Aug 2018, Accepted 27 Nov 2018, Published online: 03 Mar 2023

REFERENCES

  • McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS. 2005. G-protein signaling: back to the future. Cell Mol Life Sci 62:551–577. https://doi.org/10.1007/s00018-004-4462-3.
  • Strathmann M, Simon MI. 1990. G protein diversity: a distinct class of alpha subunits is present in vertebrates and invertebrates. Proc Natl Acad Sci U S A 87:9113–9117. https://doi.org/10.1073/pnas.87.23.9113.
  • Simon MI, Strathmann MP, Gautam N. 1991. Diversity of G proteins in signal transduction. Science 252:802–808. https://doi.org/10.1126/science.1902986.
  • Gilman AG. 1984. G proteins and dual control of adenylate cyclase. Cell 36:577–579. https://doi.org/10.1016/0092-8674(84)90336-2.
  • Sánchez-Fernández G, Cabezudo S, García-Hoz C, Benincá C, Aragay AM, Mayor F, Ribas C. 2014. Galphaq signalling: the new and the old. Cell Signal 26:833–848. https://doi.org/10.1016/j.cellsig.2014.01.010.
  • Wang T, Pentyala S, Elliott JT, Dowal L, Gupta E, Rebecchi MJ, Scarlata S. 1999. Selective interaction of the C2 domains of phospholipase C-beta1 and -beta2 with activated Galphaq subunits: an alternative function for C2-signaling modules. Proc Natl Acad Sci U S A 96:7843–7846. https://doi.org/10.1073/pnas.96.14.7843.
  • Fukuhara S, Murga C, Zohar M, Igishi T, Gutkind JS. 1999. A novel PDZ domain containing guanine nucleotide exchange factor links heterotrimeric G proteins to Rho. J Biol Chem 274:5868–5879. https://doi.org/10.1074/jbc.274.9.5868.
  • Kozasa T, Jiang X, Hart MJ, Sternweis PM, Singer WD, Gilman AG, Bollag G, Sternweis PC. 1998. p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13. Science 280:2109–2111. https://doi.org/10.1126/science.280.5372.2109.
  • Kourlas PJ, Strout MP, Becknell B, Veronese ML, Croce CM, Theil KS, Krahe R, Ruutu T, Knuutila S, Bloomfield CD, Caligiuri MA. 2000. Identification of a gene at 11q23 encoding a guanine nucleotide exchange factor: evidence for its fusion with MLL in acute myeloid leukemia. Proc Natl Acad Sci U S A 97:2145–2150. https://doi.org/10.1073/pnas.040569197.
  • Bian D, Mahanivong C, Yu J, Frisch SM, Pan ZK, Ye RD, Huang S. 2006. The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene 25:2234–2244. https://doi.org/10.1038/sj.onc.1209261.
  • Wang D, Tan YC, Kreitzer GE, Nakai Y, Shan D, Zheng Y, Huang XY. 2006. G proteins G12 and G13 control the dynamic turnover of growth factor-induced dorsal ruffles. J Biol Chem 281:32660–32667. https://doi.org/10.1074/jbc.M604588200.
  • Bodmann EL, Rinne A, Brandt D, Lutz S, Wieland T, Grosse R, Bunemann M. 2014. Dynamics of Galphaq-protein-p63RhoGEF interaction and its regulation by RGS2. Biochem J 458:131–140. https://doi.org/10.1042/BJ20130782.
  • Rojas RJ, Yohe ME, Gershburg S, Kawano T, Kozasa T, Sondek J. 2007. Galphaq directly activates p63RhoGEF and Trio via a conserved extension of the Dbl homology-associated pleckstrin homology domain. J Biol Chem 282:29201–29210. https://doi.org/10.1074/jbc.M703458200.
  • Slice LW, Han SK, Simon MI. 2003. Galphaq signaling is required for Rho-dependent transcriptional activation of the cyclooxygenase-2 promoter in fibroblasts. J Cell Physiol 194:127–138. https://doi.org/10.1002/jcp.10195.
  • Sriwai W, Zhou H, Murthy KS. 2008. G(q)-dependent signalling by the lysophosphatidic acid receptor LPA(3) in gastric smooth muscle: reciprocal regulation of MYPT1 phosphorylation by Rho kinase and cAMP-independent PKA. Biochem J 411:543–551. https://doi.org/10.1042/BJ20071299.
  • Ueda H, Morishita R, Narumiya S, Kato K, Asano T. 2004. Galphaq/11 signaling induces apoptosis through two pathways involving reduction of Akt phosphorylation and activation of RhoA in HeLa cells. Exp Cell Res 298:207–217. https://doi.org/10.1016/j.yexcr.2004.04.015.
  • Krumins AM, Gilman AG. 2006. Targeted knockdown of G protein subunits selectively prevents receptor-mediated modulation of effectors and reveals complex changes in non-targeted signaling proteins. J Biol Chem 281:10250–10262. https://doi.org/10.1074/jbc.M511551200.
  • Everly DN, Kusano S, Raab-Traub N. 2004. Accumulation of cytoplasmic beta-catenin and nuclear glycogen synthase kinase 3beta in Epstein-Barr virus-infected cells. J Virol 78:11648–11655. https://doi.org/10.1128/JVI.78.21.11648-11655.2004.
  • López-Knowles E, Zardawi SJ, McNeil CM, Millar EK, Crea P, Musgrove EA, Sutherland RL, O'Toole SA. 2010. Cytoplasmic localization of beta-catenin is a marker of poor outcome in breast cancer patients. Cancer. Epidemiol Biomarkers Prev 19:301–309. https://doi.org/10.1158/1055-9965.EPI-09-0741.
  • Valenta T, Hausmann G, Basler K. 2012. The many faces and functions of β-catenin. EMBO J 31:2714–2736. https://doi.org/10.1038/emboj.2012.150.
  • Gordon MD, Nusse R. 2006. Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors. J Biol Chem 281:22429–22433. https://doi.org/10.1074/jbc.R600015200.
  • Wu G, He X. 2006. Threonine 41 in beta-catenin serves as a key phosphorylation relay residue in beta-catenin degradation. Biochemistry 45:5319–5323. https://doi.org/10.1021/bi0601149.
  • He X, Semenov M, Tamai K, Zeng X. 2004. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131:1663–1677. https://doi.org/10.1242/dev.01117.
  • Kimelman D, Xu W. 2006. Beta-catenin destruction complex: insights and questions from a structural perspective. Oncogene 25:7482–7491. https://doi.org/10.1038/sj.onc.1210055.
  • Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X. 2002. Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847. https://doi.org/10.1016/S0092-8674(02)00685-2.
  • Salmanian S, Najafi SM, Rafipour M, Arjomand MR, Shahheydari H, Ansari S, Kashkooli L, Rasouli SJ, Jazi MS, Minaei T. 2010. Regulation of GSK-3beta and beta-Catenin by Galphaq in HEK293T cells. Biochem Biophys Res Commun 395:577–582. https://doi.org/10.1016/j.bbrc.2010.04.087.
  • Najafi SM. 2009. Activators of G proteins inhibit GSK-3beta and stabilize beta-Catenin in Xenopus oocytes. Biochem Biophys Res Commun 382:365–369. https://doi.org/10.1016/j.bbrc.2009.03.027.
  • Liu T, DeCostanzo AJ, Liu X, Wang H, Hallagan S, Moon RT, Malbon CC. 2001. G protein signaling from activated rat frizzled-1 to the beta-catenin-Lef-Tcf pathway. Science 292:1718–1722. https://doi.org/10.1126/science.1060100.
  • Liu X, Rubin JS, Kimmel AR. 2005. Rapid, Wnt-induced changes in GSK3beta associations that regulate beta-catenin stabilization are mediated by Galpha proteins. Curr Biol 15:1989–1997. https://doi.org/10.1016/j.cub.2005.10.050.
  • Meigs TE, Fields TA, McKee DD, Casey PJ. 2001. Interaction of Galpha 12 and Galpha 13 with the cytoplasmic domain of cadherin provides a mechanism for beta -catenin release. Proc Natl Acad Sci U S A 98:519–524. https://doi.org/10.1073/pnas.021350998.
  • Egger-Adam D, Katanaev VL. 2008. Trimeric G protein-dependent signaling by Frizzled receptors in animal development. Front Biosci 13:4740–4755. https://doi.org/10.2741/3036.
  • Feigin ME, Malbon CC. 2007. RGS19 regulates Wnt-beta-catenin signaling through inactivation of Galpha(o). J Cell Sci 120:3404–3414. https://doi.org/10.1242/jcs.011254.
  • Katanaev VL, Ponzielli R, Sémériva M, Tomlinson A. 2005. Trimeric G protein-dependent frizzled signaling in Drosophila. Cell 120:111–122. https://doi.org/10.1016/j.cell.2004.11.014.
  • Jung H, Kim HJ, Lee SK, Kim R, Kopachik W, Han JK, Jho EH. 2009. Negative feedback regulation of Wnt signaling by Gbetagamma-mediated reduction of Dishevelled. Exp Mol Med 41:695–706. https://doi.org/10.3858/emm.2009.41.10.076.
  • Regard JB, Cherman N, Palmer D, Kuznetsov SA, Celi FS, Guettier JM, Chen M, Bhattacharyya N, Wess J, Coughlin SR, Weinstein LS, Collins MT, Robey PG, Yang Y. 2011. Wnt/β-catenin signaling is differentially regulated by Gα proteins and contributes to fibrous dysplasia. Proc Natl Acad Sci U S A 108:20101–20106. https://doi.org/10.1073/pnas.1114656108.
  • Orth JH, Fester I, Preuss I, Agnoletto L, Wilson BA, Aktories K. 2008. Activation of Galpha (i) and subsequent uncoupling of receptor-Galpha(i) signaling by Pasteurella multocida toxin. J Biol Chem 283:23288–23294. https://doi.org/10.1074/jbc.M803435200.
  • Preuss I, Kurig B, Nürnberg B, Orth JH, Aktories K. 2009. Pasteurella multocida toxin activates Gbetagamma dimers of heterotrimeric G proteins. Cell Signal 21:551–558. https://doi.org/10.1016/j.cellsig.2008.12.007.
  • Rozengurt E, Higgins T, Chanter N, Lax AJ, Staddon JM. 1990. Pasteurella multocida toxin: potent mitogen for cultured fibroblasts. Proc Natl Acad Sci U S A 87:123–127. https://doi.org/10.1073/pnas.87.1.123.
  • Wilson BA, Zhu X, Ho M, Lu L. 1997. Pasteurella multocida toxin activates the inositol triphosphate signaling pathway in Xenopus oocytes via G(q)alpha-coupled phospholipase C-beta1. J Biol Chem 272:1268–1275. https://doi.org/10.1074/jbc.272.2.1268.
  • Orth JH, Lang S, Taniguchi M, Aktories K. 2005. Pasteurella multocida toxin-induced activation of RhoA is mediated via two families of G{alpha} proteins, G{alpha}q and G{alpha}12/13. J Biol Chem 280:36701–36707. https://doi.org/10.1074/jbc.M507203200.
  • Orth JH, Fester I, Siegert P, Weise M, Lanner U, Kamitani S, Tachibana T, Wilson BA, Schlosser A, Horiguchi Y, Aktories K. 2013. Substrate specificity of Pasteurella multocida toxin for α subunits of heterotrimeric G proteins. FASEB J 27:832–842. https://doi.org/10.1096/fj.12-213900.
  • Babb RC, Homer KA, Robbins J, Lax AJ. 2012. Modification of heterotrimeric G-proteins in Swiss 3T3 cells stimulated with Pasteurella multocida toxin. PLoS One 7:e47188. https://doi.org/10.1371/journal.pone.0047188.
  • Orth JH, Preuss I, Fester I, Schlosser A, Wilson BA, Aktories K. 2009. Pasteurella multocida toxin activation of heterotrimeric G proteins by deamidation. Proc Natl Acad Sci U S A 106:7179–7184. https://doi.org/10.1073/pnas.0900160106.
  • Kamitani S, Ao S, Toshima H, Tachibana T, Hashimoto M, Kitadokoro K, Fukui-Miyazaki A, Abe H, Horiguchi Y. 2011. Enzymatic actions of Pasteurella multocida toxin detected by monoclonal antibodies recognizing the deamidated α subunit of the heterotrimeric GTPase Gq. FEBS J 278:2702–2712. https://doi.org/10.1111/j.1742-4658.2011.08197.x.
  • Hedgepeth CM, Conrad LJ, Zhang J, Huang HC, Lee VM, Klein PS. 1997. Activation of the Wnt signaling pathway: a molecular mechanism for lithium action. Dev Biol 185:82–91. https://doi.org/10.1006/dbio.1997.8552.
  • Orme MH, Giannini AL, Vivanco MD, Kypta RM. 2003. Glycogen synthase kinase-3 and Axin function in a beta-catenin-independent pathway that regulates neurite outgrowth in neuroblastoma cells. Mol Cell Neurosci 24:673–686. https://doi.org/10.1016/S1044-7431(03)00229-X.
  • Zywietz A, Gohla A, Schmelz M, Schultz G, Offermanns S. 2001. Pleiotropic effects of Pasteurella multocida toxin are mediated by Gq-dependent and -independent mechanisms. J Biol Chem 276:3840–3845. https://doi.org/10.1074/jbc.M007819200.
  • Li G, Iyengar R. 2002. Calpain as an effector of the Gq signaling pathway for inhibition of Wnt/beta -catenin-regulated cell proliferation. Proc Natl Acad Sci U S A 99:13254–13259. https://doi.org/10.1073/pnas.202355799.
  • Malbon CC. 2005. G proteins in development. Nat Rev Mol Cell Biol 6:689–701. https://doi.org/10.1038/nrm1716.
  • O'Hayre M, Vazquez-Prado J, Kufareva I, Stawiski EW, Handel TM, Seshagiri S, Gutkind JS. 2013. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat Rev Cancer 13:412–424. https://doi.org/10.1038/nrc3521.
  • Meigs TE, Fedor-Chaiken M, Kaplan DD, Brackenbury R, Casey PJ. 2002. Galpha12 and Galpha13 negatively regulate the adhesive functions of cadherin. J Biol Chem 277:24594–24600. https://doi.org/10.1074/jbc.M201984200.
  • Harmey D, Stenbeck G, Nobes CD, Lax AJ, Grigoriadis AE. 2004. Regulation of osteoblast differentiation by Pasteurella multocida toxin (PMT): a role for Rho GTPase in bone formation. J Bone Miner Res 19:661–670. https://doi.org/10.1359/JBMR.040105.
  • Li L, Tam L, Liu L, Jin T, Ng DS. 2011. Wnt-signaling mediates the anti-adipogenic action of lysophosphatidic acid through cross talking with the Rho/Rho associated kinase (ROCK) pathway. Biochem Cell Biol 89:515–521. https://doi.org/10.1139/o11-048.
  • Jacobs KM, Bhave SR, Ferraro DJ, Jaboin JJ, Hallahan DE, Thotala D. 2012. GSK-3β: A Bifunctional Role in Cell Death Pathways. Int J Cell Biol 2012:930710. https://doi.org/10.1155/2012/930710.
  • Kim K, Pang KM, Evans M, Hay ED. 2000. Overexpression of beta-catenin induces apoptosis independent of its transactivation function with LEF-1 or the involvement of major G1 cell cycle regulators. Mol Biol Cell 11:3509–3523. https://doi.org/10.1091/mbc.11.10.3509.
  • Ming M, Wang S, Wu W, Senyuk V, Le Beau MM, Nucifora G, Qian Z. 2012. Activation of Wnt/β-catenin protein signaling induces mitochondria-mediated apoptosis in hematopoietic progenitor cells. J Biol Chem 287:22683–22690. https://doi.org/10.1074/jbc.M112.342089.
  • Yanamadala V, Negoro H, Denker BM. 2009. Heterotrimeric G proteins and apoptosis: intersecting signaling pathways leading to context dependent phenotypes. Curr Mol Med 9:527–545. https://doi.org/10.2174/156652409788488784.
  • Shang S, Hua F, Hu ZW. 2017. The regulation of β-catenin activity and function in cancer: therapeutic opportunities. Oncotarget 8:33972–33989. https://doi.org/10.18632/oncotarget.15687.
  • Stemmle LN, Fields TA, Casey PJ. 2006. The regulator of G protein signaling domain of axin selectively interacts with Galpha12 but not Galpha13. Mol Pharmacol 70:1461–1468. https://doi.org/10.1124/mol.106.023705.
  • Lax AJ. 2005. Opinion: Bacterial toxins and cancer–a case to answer? Nat Rev Microbiol 3:343–349. https://doi.org/10.1038/nrmicro1130.
  • Towbin H, Staehelin T, Gordon J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:4350–4354.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.