91
Views
34
CrossRef citations to date
0
Altmetric
Article

RNA-Binding Protein AUF1 Promotes Myogenesis by Regulating MEF2C Expression Levels

, , , , , , , , , , , & show all
Pages 3106-3119 | Received 28 Mar 2014, Accepted 28 May 2014, Published online: 20 Mar 2023

REFERENCES

  • Glisovic T, Bachorik JL, Yong J, Dreyfuss G. 2008. RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett. 582:1977–1986. http://dx.doi.org/10.1016/j.febslet.2008.03.004.
  • Moore MJ. 2005. From birth to death: the complex lives of eukaryotic mRNAs. Science 309:1514–1518. http://dx.doi.org/10.1126/science.1111443.
  • Yoon JH, Abdelmohsen K, Gorospe M. 2013. Post-transcriptional gene regulation by long noncoding RNA. J. Mol. Biol. 425:3723–3730. http://dx.doi.org/10.1016/j.jmb.2012.11.024.
  • Mitchell P, Tollervey D. 2000. Review mRNA stability in eukaryotes. Curr. Opin. Genet. Dev. 10:193–198. http://dx.doi.org/10.1016/S0959-437X(00)00063-0.
  • Orphanides G, Reinberg D. 2002. A unified theory of gene expression. Cell 108:439–451. http://dx.doi.org/10.1016/S0092-8674(02)00655-4.
  • Hinman MN, Lou H. 2008. Diverse molecular functions of Hu proteins. Cell Mol. Life Sci. 65:3168–3181. http://dx.doi.org/10.1007/s00018-008-8252-6.
  • Lee EK, Kim HH, Kuwano Y, Abdelmohsen K, Srikantan S, Subaran SS, Gleichmann M, Mughal MR, Martindale JL, Yang X, Worley PF, Mattson MP, Gorospe M. 2010. hnRNP C promotes APP translation by competing with FMRP for APP mRNA recruitment to P bodies. Nat. Struct. Mol. Biol. 17:732–739. http://dx.doi.org/10.1038/nsmb.1815.
  • Mazan-Mamczarz K, Lal A, Martindale JL, Kawai T, Gorospe M. 2006. Translational repression by RNA-binding protein TIAR. Mol. Cell. Biol. 26:2716–2727. http://dx.doi.org/10.1128/MCB.26.7.2716-2727.2006.
  • Philips AV, Timchenko LT, Cooper TA. 1998. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 280:737–741. http://dx.doi.org/10.1126/science.280.5364.737.
  • Piecyk M, Wax S, Beck AR, Kedersha N, Gupta M, Maritim B, Chen S, Gueydan C, Kruys V, Streuli M, Anderson P. 2000. TIA-1 is a translational silencer that selectively regulates the expression of TNF-alpha. EMBO J. 19:4154–4163. http://dx.doi.org/10.1093/emboj/19.15.4154.
  • Loflin P, Chen CY, Shyu AB. 1999. Unraveling a cytoplasmic role for hnRNP D in the in vivo mRNA destabilization directed by the AU-rich element. Genes Dev. 13:1884–1897. http://dx.doi.org/10.1101/gad.13.14.1884.
  • Zhang W, Wagner BJ, Ehrenman K, Schaefer AW, DeMaria CT, Crater D, DeHaven K, Long L, Brewer G. 1993. Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol. Cell. Biol. 13:7652–7665.
  • Gratacós FM, Brewer G. 2010. The role of AUF1 in regulated mRNA decay. Wiley Interdiscip. Rev. RNA 1:457–473. http://dx.doi.org/10.1002/wrna.26.
  • White EJ, Brewer G, Wilson GM. 2013. Post-transcriptional control of gene expression by AUF1: mechanisms, physiological targets, and regulation. Biochim. Biophys. Acta 1829:680–688. http://dx.doi.org/10.1016/j.bbagrm.2012.12.002.
  • Abdelmohsen K, Kuwano Y, Kim HH, Gorospe M. 2008. Posttranscriptional gene regulation by RNA-binding proteins during oxidative stress: implications for cellular senescence. Biol. Chem. 389:243–255.
  • Zucconi BE, Wilson GM. 2011. Modulation of neoplastic gene regulatory pathways by the RNA-binding factor AUF1. Front. Biosci. (Landmark Ed.) 16:2307–2325. http://dx.doi.org/10.2741/3855.
  • Lu JY, Sadri N, Schneider RJ. 2006. Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev. 20:3174–3184. http://dx.doi.org/10.1101/gad.1467606.
  • Sadri N, Lu JY, Badura ML, Schneider RJ. 2010. AUF1 is involved in splenic follicular B cell maintenance. BMC Immunol. 11:1. http://dx.doi.org/10.1186/1471-2172-11-1.
  • Sadri N, Schneider RJ. 2009. Auf1/Hnrnpd-deficient mice develop pruritic inflammatory skin disease. J. Investig. Dermatol. 129:657–670. http://dx.doi.org/10.1038/jid.2008.298.
  • Pont AR, Sadri N, Hsiao SJ, Smith S, Schneider RJ. 2012. mRNA decay factor AUF1 maintains normal aging, telomere maintenance, and suppression of senescence by activation of telomerase transcription. Mol. Cell 47:5–15.
  • Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano MJr, Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T. 2010. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141:129–141. http://dx.doi.org/10.1016/j.cell.2010.03.009.
  • Ascano M, Hafner M, Cekan P, Gerstberger S, Tuschl T. 2012. Identification of RNA-protein interaction networks using PAR-CLIP. Wiley Interdiscip. Rev. RNA 3:159–177. http://dx.doi.org/10.1002/wrna.1103.
  • Sarkar B, Lu JY, Schneider RJ. 2003. Nuclear import and export functions in the different isoforms of the AUF1/heterogeneous nuclear ribonucleoprotein protein family. J. Biol. Chem. 278:20700–20707. http://dx.doi.org/10.1074/jbc.M301176200.
  • Abdelmohsen K, Pullmann RJr, Lal A, Kim HH, Galban S, Yang X, Blethrow JD, Walker M, Shubert J, Gillespie DA, Furneaux H, Gorospe M. 2007. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol. Cell 25:543–557. http://dx.doi.org/10.1016/j.molcel.2007.01.011.
  • Morey ER, Sabelman EE, Turner RT, Baylink DJ. 1979. A new rat model simulating some aspects of space flight. Physiologist 22:S23–S24.
  • Park E, Schultz E. 1993. A simple hindlimb suspension apparatus. Aviat. Space Environ. Med. 64:401–404.
  • Figueroa A, Cuadrado A, Fan J, Atasoy U, Muscat GE, Muñoz-Canoves P, Gorospe M, Muñoz A. 2003. Role of HuR in skeletal myogenesis through coordinate regulation of muscle differentiation genes. Mol. Cell. Biol. 23:4991–5004. http://dx.doi.org/10.1128/MCB.23.14.4991-5004.2003.
  • Molkentin JD, Olson EN. 1996. Defining the regulatory networks for muscle development. Curr. Opin. Genet. Dev. 6:445–453. http://dx.doi.org/10.1016/S0959-437X(96)80066-9.
  • Molkentin JD, Olson EN. 1996. Combinatorial control of muscle development by basic helix-loop-helix and MADS-box transcription factors. Proc. Natl. Acad. Sci. U. S. A. 93:9366–9373. http://dx.doi.org/10.1073/pnas.93.18.9366.
  • Olson E. 1992. Activation of muscle-specific transcription by myogenic helix-loop-helix proteins. Symp. Soc. Exp. Biol. 46:331–241.
  • Liao B, Hu Y, Brewer G. 2007. Competitive binding of AUF1 and TIAR to MYC mRNA controls its translation. Nat. Struct. Mol. Biol. 14:511–518. http://dx.doi.org/10.1038/nsmb1249.
  • Ehlers C, Schirmer S, Kehlenbach RH, Hauber J, Chemnitz J. 2013. Post-transcriptional regulation of CD83 expression by AUF1 proteins. Nucleic Acids Res. 41:206–219. http://dx.doi.org/10.1093/nar/gks1069.
  • Lu JY, Bergman N, Sadri N, Schneider RJ. 2006. Assembly of AUF1 with eIF4G-poly(A) binding protein complex suggests a translation function in AU-rich mRNA decay. RNA 12:883–893. http://dx.doi.org/10.1261/rna.2308106.
  • Dempsey LA, Hanakahi LA, Maizels N. 1998. A specific isoform of hnRNP D interacts with DNA in the LR1 heterodimer: canonical RNA binding motifs in a sequence-specific duplex DNA binding protein. J. Biol. Chem. 273:29224–29229. http://dx.doi.org/10.1074/jbc.273.44.29224.
  • Tolnay M, Vereshchagina LA, Tsokos GC. 1999. Heterogeneous nuclear ribonucleoprotein D0B is a sequence-specific DNA-binding protein. Biochem. J. 338:417–425. http://dx.doi.org/10.1042/0264-6021:3380417.
  • Enokizono Y, Konishi Y, Nagata K, Ouhashi K, Uesugi S, Ishikawa F, Katahira M. 2005. Structure of hnRNP D complexed with singlestranded telomere DNA and unfolding of the quadruplex by heterogeneous nuclear ribonucleoprotein D. J. Biol. Chem. 280:18862–18870. http://dx.doi.org/10.1074/jbc.M411822200.
  • Blais A, Tsikitis M, Acosta-Alvear D, Sharan R, Kluger Y, Dynlacht BD. 2005. An initial blueprint for myogenic differentiation. Genes Dev. 19:553–569. http://dx.doi.org/10.1101/gad.1281105.
  • Shore P, Sharrocks AD. 1995. The MADS-box family of transcription factors. Eur. J. Biochem. 229:1–13. http://dx.doi.org/10.1111/j.1432-1033.1995.tb20430.x.
  • Edmondson DG, Lyons GE, Martin JF, Olson EN. 1994. Mef2 gene expression marks the cardiac and skeletal muscle lineages during mouse embryogenesis. Development 120:1251–1263.
  • Arnold MA, Kim Y, Czubryt MP, Phan D, McAnally J, Qi X, Shelton JM, Richardson JA, Bassel-Duby R, Olson EN. 2007. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev. Cell 12:377–389. http://dx.doi.org/10.1016/j.devcel.2007.02.004.
  • Black BL, Lu J, Olson EN. 1997. The MEF2A 3′ untranslated region functions as a cis-acting translational repressor. Mol. Cell. Biol. 17:2756–2763.
  • Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, Simard AR, Michel RN, Bassel-Duby R, Olson EN, Williams RS. 2000. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 19:1963–1973. http://dx.doi.org/10.1093/emboj/19.9.1963.
  • Wu H, Rothermel B, Kanatous S, Rosenberg P, Naya FJ, Shelton JM, Hutcheson KA, DiMaio JM, Olson EN, Bassel-Duby R, Williams RS. 2001. Activation of MEF2 by muscle activity is mediated through a calcineurin-dependent pathway. EMBO J. 20:6414–6423. http://dx.doi.org/10.1093/emboj/20.22.6414.
  • Molkentin JD, Black BL, Martin JF, Olson EN. 1995. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83:1125–1136. http://dx.doi.org/10.1016/0092-8674(95)90139-6.
  • Wang DZ, Valdez MR, McAnally J, Richardson J, Olson EN. 2001. The Mef2c gene is a direct transcriptional target of myogenic bHLH and MEF2 proteins during skeletal muscle development. Development 128:4623–4633.
  • Shen H, McElhinny AS, Cao Y, Gao P, Liu J, Bronson R, Griffin JD, Wu L. 2006. The Notch coactivator, MAML1, functions as a novel coactivator for MEF2C-mediated transcription and is required for normal myogenesis. Genes Dev. 20:675–688. http://dx.doi.org/10.1101/gad.1383706.
  • Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. 2004. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol. Cell. Biol. 24:8467–8476. http://dx.doi.org/10.1128/MCB.24.19.8467-8476.2004.
  • McKinsey TA, Zhang CL, Lu J, Olson EN. 2000. Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408:106–111. http://dx.doi.org/10.1038/35040593.
  • McKinsey TA, Zhang CL, Olson EN. 2002. MEF2: a calcium-dependent regulator of cell division, differentiation and death. Trends Biochem. Sci. 27:40–47. http://dx.doi.org/10.1016/S0968-0004(01)02031-X.
  • Liu ML, Olson AL, Edgington NP, Moye-Rowley WS, Pessin JE. 1994. Myocyte enhancer factor 2 (MEF2) binding site is essential for C2C12 myotube-specific expression of the rat GLUT4/muscle-adipose facilitative glucose transporter gene. J. Biol. Chem. 269:28514–28521.
  • Olson EN, Perry M, Schulz RA. 1995. Regulation of muscle differentiation by the MEF2 family of MADS box transcription factors. Dev. Biol. 172:2–14. http://dx.doi.org/10.1006/dbio.1995.0002.
  • Potthoff MJ, Olson EN. 2007. MEF2: a central regulator of diverse developmental programs. Development 134:4131–4140. http://dx.doi.org/10.1242/dev.008367.
  • Richardson JM, Pessin JE. 1993. Identification of a skeletal muscle-specific regulatory domain in the rat GLUT4/muscle-fat gene. J. Biol. Chem. 268:21021–21027.
  • Liu N, Williams AH, Kim Y, McAnally J, Bezprozvannaya S, Sutherland LB, Richardson JA, Bassel-Duby R, Olson EN. 2007. An intragenic MEF2-dependent enhancer directs muscle-specific expression of microRNAs 1 and 133. Proc. Natl. Acad. Sci. U. S. A. 104:20844–20849. http://dx.doi.org/10.1073/pnas.0710558105.
  • Sokol NS, Ambros V. 2005. Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev. 19:2343–2354. http://dx.doi.org/10.1101/gad.1356105.
  • Lin Q, Schwarz J, Bucana C, Olson EN. 1997. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276:1404–1407. http://dx.doi.org/10.1126/science.276.5317.1404.
  • Potthoff MJ, Olson EN, Bassel-Duby R. 2007. Skeletal muscle remodeling. Curr. Opin. Rheumatol. 19:542–549. http://dx.doi.org/10.1097/BOR.0b013e3282efb761.
  • Alexander MS, Shi X, Voelker KA, Grange RW, Garcia JA, Hammer RE, Garry DJ. 2010. Foxj3 transcriptionally activates Mef2c and regulates adult skeletal muscle fiber type identity. Dev. Biol. 337:396–404. http://dx.doi.org/10.1016/j.ydbio.2009.11.015.
  • Dodou E, Xu SM, Black BL. 2003. Mef2c is activated directly by myogenic basic helix-loop-helix proteins during skeletal muscle development in vivo. Mech. Dev. 120:1021–1032. http://dx.doi.org/10.1016/S0925-4773(03)00178-3.
  • Chinchilla A, Lozano E, Daimi H, Esteban FJ, Crist C, Aranega AE, Franco D. 2011. MicroRNA profiling during mouse ventricular maturation: a role for miR-27 modulating Mef2c expression. Cardiovasc. Res. 89:98–108. http://dx.doi.org/10.1093/cvr/cvq264.
  • Yelamanchili SV, Chaudhuri AD, Chen LN, Xiong H, Fox HS. 2010. MicroRNA-21 dysregulates the expression of MEF2C in neurons in monkey and human SIV/HIV neurological disease. Cell Death Dis. 1:e77. http://dx.doi.org/10.1038/cddis.2010.56.
  • Blech-Hermoni Y, Ladd AN. 2013. RNA binding proteins in the regulation of heart development. Int. J. Biochem. Cell Biol. 45:2467–2478. http://dx.doi.org/10.1016/j.biocel.2013.08.008.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.