18
Views
11
CrossRef citations to date
0
Altmetric
Article

Differential and Concordant Roles for Poly(ADP-Ribose) Polymerase 1 and Poly(ADP-Ribose) in Regulating WRN and RECQL5 Activities

, , , , , , & show all
Pages 3974-3989 | Received 27 Apr 2015, Accepted 03 Sep 2015, Published online: 20 Mar 2023

REFERENCES

  • Sancar A, Lindsey-Boltz LA, Unsal-Kacmaz K, Linn S. 2004. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu Rev Biochem 73:39–85. http://dx.doi.org/10.1146/annurev.biochem.73.011303.073723.
  • Lord CJ, Ashworth A. 2012. The DNA damage response and cancer therapy. Nature 481:287–294. http://dx.doi.org/10.1038/nature10760.
  • Kim MY, Zhang T, Kraus WL. 2005. Poly(ADP-ribosyl)ation by PARP-1: ‘PAR-laying’ NAD+ into a nuclear signal. Genes Dev 19:1951–1967. http://dx.doi.org/10.1101/gad.1331805.
  • Gibson BA, Kraus WL. 2012. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat Rev Mol Cell Biol 13:411–424. http://dx.doi.org/10.1038/nrm3376.
  • Meyer-Ficca ML, Meyer RG, Coyle DL, Jacobson EL, Jacobson MK. 2004. Human poly(ADP-ribose) glycohydrolase is expressed in alternative splice variants yielding isoforms that localize to different cell compartments. Exp Cell Res 297:521–532. http://dx.doi.org/10.1016/j.yexcr.2004.03.050.
  • Niere M, Kernstock S, Koch-Nolte F, Ziegler M. 2008. Functional localization of two poly(ADP-ribose)-degrading enzymes to the mitochondrial matrix. Mol Cell Biol 28:814–824. http://dx.doi.org/10.1128/MCB.01766-07.
  • Min W, Cortes U, Herceg Z, Tong WM, Wang ZQ. 2010. Deletion of the nuclear isoform of poly(ADP-ribose) glycohydrolase (PARG) reveals its function in DNA repair, genomic stability and tumorigenesis. Carcinogenesis 31:2058–2065. http://dx.doi.org/10.1093/carcin/bgq205.
  • Barkauskaite E, Brassington A, Tan ES, Warwicker J, Dunstan MS, Banos B, Lafite P, Ahel M, Mitchison TJ, Ahel I, Leys D. 2013. Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities. Nat Commun 4:2164. http://dx.doi.org/10.1038/ncomms3164.
  • Rosenthal F, Feijs KL, Frugier E, Bonalli M, Forst AH, Imhof R, Winkler HC, Fischer D, Caflisch A, Hassa PO, Luscher B, Hottiger MO. 2013. Macrodomain-containing proteins are new mono-ADP-ribosylhydrolases. Nat Struct Mol Biol 20:502–507. http://dx.doi.org/10.1038/nsmb.2521.
  • Jankevicius G, Hassler M, Golia B, Rybin V, Zacharias M, Timinszky G, Ladurner AG. 2013. A family of macrodomain proteins reverses cellular mono-ADP-ribosylation. Nat Struct Mol Biol 20:508–514. http://dx.doi.org/10.1038/nsmb.2523.
  • Mangerich A, Burkle A. 2012. Pleiotropic cellular functions of PARP1 in longevity and aging: genome maintenance meets inflammation. Oxid Med Cell Longev 2012:321653. http://dx.doi.org/10.1155/2012/321653.
  • Haince JF, McDonald D, Rodrigue A, Dery U, Masson JY, Hendzel MJ, Poirier GG. 2008. PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites. J Biol Chem 283:1197–1208. http://dx.doi.org/10.1074/jbc.M706734200.
  • Li M, Lu LY, Yang CY, Wang S, Yu X. 2013. The FHA and BRCT domains recognize ADP-ribosylation during DNA damage response. Genes Dev 27:1752–1768. http://dx.doi.org/10.1101/gad.226357.113.
  • Li M, Yu X. 2013. Function of BRCA1 in the DNA damage response is mediated by ADP-ribosylation. Cancer Cell 23:693–704. http://dx.doi.org/10.1016/j.ccr.2013.03.025.
  • Haince JF, Kozlov S, Dawson VL, Dawson TM, Hendzel MJ, Lavin MF, Poirier GG. 2007. Ataxia telangiectasia mutated (ATM) signaling network is modulated by a novel poly(ADP-ribose)-dependent pathway in the early response to DNA-damaging agents. J Biol Chem 282:16441–16453. http://dx.doi.org/10.1074/jbc.M608406200.
  • Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. 2010. PARP inhibition: PARP1 and beyond. Nat Rev Cancer 10:293–301. http://dx.doi.org/10.1038/nrc2812.
  • Brosh RM, Jr. 2013. DNA helicases involved in DNA repair and their roles in cancer. Nat Rev Cancer 13:542–558. http://dx.doi.org/10.1038/nrc3560.
  • Croteau DL, Popuri V, Opresko PL, Bohr VA. 2014. Human RecQ helicases in DNA repair, recombination, and replication. Annu Rev Biochem 83:519–552. http://dx.doi.org/10.1146/annurev-biochem-060713-035428.
  • Adelfalk C, Kontou M, Hirsch-Kauffmann M, Schweiger M. 2003. Physical and functional interaction of the Werner syndrome protein with poly-ADP ribosyl transferase. FEBS Lett 554:55–58. http://dx.doi.org/10.1016/S0014-5793(03)01088-3.
  • Woo LL, Futami K, Shimamoto A, Furuichi Y, Frank KM. 2006. The Rothmund-Thomson gene product RECQL4 localizes to the nucleolus in response to oxidative stress. Exp Cell Res 312:3443–3457. http://dx.doi.org/10.1016/j.yexcr.2006.07.023.
  • Veith S, Mangerich A. 2015. RecQ helicases and PARP1 team up in maintaining genome integrity. Ageing Res Rev 23:12–28. http://dx.doi.org/10.1016/j.arr.2014.12.006.
  • Berti M, Ray Chaudhuri A, Thangavel S, Gomathinayagam S, Kenig S, Vujanovic M, Odreman F, Glatter T, Graziano S, Mendoza-Maldonado R, Marino F, Lucic B, Biasin V, Gstaiger M, Aebersold R, Sidorova JM, Monnat RJ, Jr, Lopes M, Vindigni A. 2013. Human RECQ1 promotes restart of replication forks reversed by DNA topoisomerase I inhibition. Nat Struct Mol Biol 20:347–354. http://dx.doi.org/10.1038/nsmb.2501.
  • von Kobbe C, Harrigan JA, Schreiber V, Stiegler P, Piotrowski J, Dawut L, Bohr VA. 2004. Poly(ADP-ribose) polymerase 1 regulates both the exonuclease and helicase activities of the Werner syndrome protein. Nucleic Acids Res 32:4003–4014. http://dx.doi.org/10.1093/nar/gkh721.
  • Popp O, Veith S, Fahrer J, Bohr VA, Burkle A, Mangerich A. 2013. Site-specific noncovalent interaction of the biopolymer poly(ADP-ribose) with the Werner syndrome protein regulates protein functions. ACS Chem Biol 8:179–188. http://dx.doi.org/10.1021/cb300363g.
  • Lebel M, Lavoie J, Gaudreault I, Bronsard M, Drouin R. 2003. Genetic cooperation between the Werner syndrome protein and poly(ADP-ribose) polymerase-1 in preventing chromatid breaks, complex chromosomal rearrangements, and cancer in mice. Am J Pathol 162:1559–1569. http://dx.doi.org/10.1016/S0002-9440(10)64290-3.
  • Tadokoro T, Ramamoorthy M, Popuri V, May A, Tian J, Sykora P, Rybanska I, Wilson DM, III, Croteau DL, Bohr VA. 2012. Human RECQL5 participates in the removal of endogenous DNA damage. Mol Biol Cell 23:4273–4285. http://dx.doi.org/10.1091/mbc.E12-02-0110.
  • Hu Y, Raynard S, Sehorn MG, Lu X, Bussen W, Zheng L, Stark JM, Barnes EL, Chi P, Janscak P, Jasin M, Vogel H, Sung P, Luo G. 2007. RECQL5/Recql5 helicase regulates homologous recombination and suppresses tumor formation via disruption of Rad51 presynaptic filaments. Genes Dev 21:3073–3084. http://dx.doi.org/10.1101/gad.1609107.
  • Zheng L, Kanagaraj R, Mihaljevic B, Schwendener S, Sartori AA, Gerrits B, Shevelev I, Janscak P. 2009. MRE11 complex links RECQ5 helicase to sites of DNA damage. Nucleic Acids Res 37:2645–2657. http://dx.doi.org/10.1093/nar/gkp147.
  • Islam MN, Paquet N, Fox D, III, Dray E, Zheng XF, Klein H, Sung P, Wang W. 2012. A variant of the breast cancer type 2 susceptibility protein (BRC) repeat is essential for the RECQL5 helicase to interact with RAD51 recombinase for genome stabilization. J Biol Chem 287:23808–23818. http://dx.doi.org/10.1074/jbc.M112.375014.
  • Paliwal S, Kanagaraj R, Sturzenegger A, Burdova K, Janscak P. 2014. Human RECQ5 helicase promotes repair of DNA double-strand breaks by synthesis-dependent strand annealing. Nucleic Acids Res 42:2380–2390. http://dx.doi.org/10.1093/nar/gkt1263.
  • Popuri V, Ramamoorthy M, Tadokoro T, Singh DK, Karmakar P, Croteau DL, Bohr VA. 2012. Recruitment and retention dynamics of RECQL5 at DNA double strand break sites. DNA Repair 11:624–635. http://dx.doi.org/10.1016/j.dnarep.2012.05.001.
  • Janscak P, Garcia PL, Hamburger F, Makuta Y, Shiraishi K, Imai Y, Ikeda H, Bickle TA. 2003. Characterization and mutational analysis of the RecQ core of the bloom syndrome protein. J Mol Biol 330:29–42. http://dx.doi.org/10.1016/S0022-2836(03)00534-5.
  • Orren DK, Brosh RM, Jr, Nehlin JO, Machwe A, Gray MD, Bohr VA. 1999. Enzymatic and DNA binding properties of purified WRN protein: high affinity binding to single-stranded DNA but not to DNA damage induced by 4NQO. Nucleic Acids Res 27:3557–3566. http://dx.doi.org/10.1093/nar/27.17.3557.
  • Kawamitsu H, Hoshino H, Okada H, Miwa M, Momoi H, Sugimura T. 1984. Monoclonal antibodies to poly(adenosine diphosphate ribose) recognize different structures. Biochemistry 23:3771–3777. http://dx.doi.org/10.1021/bi00311a032.
  • Fahrer J, Kranaster R, Altmeyer M, Marx A, Burkle A. 2007. Quantitative analysis of the binding affinity of poly(ADP-ribose) to specific binding proteins as a function of chain length. Nucleic Acids Res 35:e143. http://dx.doi.org/10.1093/nar/gkm944.
  • Popuri V, Huang J, Ramamoorthy M, Tadokoro T, Croteau DL, Bohr VA. 2013. RECQL5 plays co-operative and complementary roles with WRN syndrome helicase. Nucleic Acids Res 41:881–899. http://dx.doi.org/10.1093/nar/gks1134.
  • Tadokoro T, Kulikowicz T, Dawut L, Croteau DL, Bohr VA. 2012. DNA binding residues in the RQC domain of Werner protein are critical for its catalytic activities. Aging 4:417–429.
  • Tadokoro T, Rybanska-Spaeder I, Kulikowicz T, Dawut L, Oshima J, Croteau DL, Bohr VA. 2013. Functional deficit associated with a missense Werner syndrome mutation. DNA Repair 12:414–421. http://dx.doi.org/10.1016/j.dnarep.2013.03.004.
  • Singh DK, Karmakar P, Aamann M, Schurman SH, May A, Croteau DL, Burks L, Plon SE, Bohr VA. 2010. The involvement of human RECQL4 in DNA double-strand break repair. Aging Cell 9:358–371. http://dx.doi.org/10.1111/j.1474-9726.2010.00562.x.
  • Liberti SE, Andersen SD, Wang J, May A, Miron S, Perderiset M, Keijzers G, Nielsen FC, Charbonnier JB, Bohr VA, Rasmussen LJ. 2011. Bi-directional routing of DNA mismatch repair protein human exonuclease 1 to replication foci and DNA double strand breaks. DNA Repair 10:73–86. http://dx.doi.org/10.1016/j.dnarep.2010.09.023.
  • Mao Z, Bozzella M, Seluanov A, Gorbunova V. 2008. DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7:2902–2906. http://dx.doi.org/10.4161/cc.7.18.6679.
  • Stark JM, Pierce AJ, Oh J, Pastink A, Jasin M. 2004. Genetic steps of mammalian homologous repair with distinct mutagenic consequences. Mol Cell Biol 24:9305–9316. http://dx.doi.org/10.1128/MCB.24.21.9305-9316.2004.
  • Shamanna RA, Hoque M, Lewis-Antes A, Azzam EI, Lagunoff D, Pe'ery T, Mathews MB. 2011. The NF90/NF45 complex participates in DNA break repair via nonhomologous end joining. Mol Cell Biol 31:4832–4843. http://dx.doi.org/10.1128/MCB.05849-11.
  • Malanga M, Althaus FR. 2011. Noncovalent protein interaction with poly(ADP-ribose). Methods Mol Biol 780:67–82. http://dx.doi.org/10.1007/978-1-61779-270-0_5.
  • Barkauskaite E, Jankevicius G, Ladurner AG, Ahel I, Timinszky G. 2013. The recognition and removal of cellular poly(ADP-ribose) signals. FEBS J 280:3491–3507. http://dx.doi.org/10.1111/febs.12358.
  • Islam MN, Fox D, III, Guo R, Enomoto T, Wang W. 2010. RecQL5 promotes genome stabilization through two parallel mechanisms—interacting with RNA polymerase II and acting as a helicase. Mol Cell Biol 30:2460–2472. http://dx.doi.org/10.1128/MCB.01583-09.
  • Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, Ji J, Takeda S, Pommier Y. 2012. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res 72:5588–5599. http://dx.doi.org/10.1158/0008-5472.CAN-12-2753.
  • Garcia PL, Liu Y, Jiricny J, West SC, Janscak P. 2004. Human RECQ5beta, a protein with DNA helicase and strand-annealing activities in a single polypeptide. EMBO J 23:2882–2891. http://dx.doi.org/10.1038/sj.emboj.7600301.
  • Xu X, Liu Y. 2009. Dual DNA unwinding activities of the Rothmund-Thomson syndrome protein, RECQ4. EMBO J 28:568–577. http://dx.doi.org/10.1038/emboj.2009.13.
  • Rossi ML, Ghosh AK, Kulikowicz T, Croteau DL, Bohr VA. 2010. Conserved helicase domain of human RecQ4 is required for strand annealing-independent DNA unwinding. DNA Repair 9:796–804. http://dx.doi.org/10.1016/j.dnarep.2010.04.003.
  • Ahel I, Ahel D, Matsusaka T, Clark AJ, Pines J, Boulton SJ, West SC. 2008. Poly(ADP-ribose)-binding zinc finger motifs in DNA repair/checkpoint proteins. Nature 451:81–85. http://dx.doi.org/10.1038/nature06420.
  • Pleschke JM, Kleczkowska HE, Strohm M, Althaus FR. 2000. Poly(ADP-ribose) binds to specific domains in DNA damage checkpoint proteins. J Biol Chem 275:40974–40980. http://dx.doi.org/10.1074/jbc.M006520200.
  • Krietsch J, Rouleau M, Pic E, Ethier C, Dawson TM, Dawson VL, Masson JY, Poirier GG, Gagne JP. 2013. Reprogramming cellular events by poly(ADP-ribose)-binding proteins. Mol Aspects Med 34:1066–1087. http://dx.doi.org/10.1016/j.mam.2012.12.005.
  • Wang Z, Michaud GA, Cheng Z, Zhang Y, Hinds TR, Fan E, Cong F, Xu W. 2012. Recognition of the iso-ADP-ribose moiety in poly(ADP-ribose) by WWE domains suggests a general mechanism for poly(ADP-ribosyl)ation-dependent ubiquitination. Genes Dev 26:235–240. http://dx.doi.org/10.1101/gad.182618.111.
  • Bouwman P, Jonkers J. 2012. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer 12:587–598. http://dx.doi.org/10.1038/nrc3342.
  • Farmer H, McCabe N, Lord CJ, Tutt ANJ, Johnson DA, Richardson TB, Santarosa M, Dillon KJ, Hickson I, Knights C, Martin NMB, Jackson SP, Smith GCM, Ashworth A. 2005. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–920. http://dx.doi.org/10.1038/nature03445.
  • Polo SE, Jackson SP. 2011. Dynamics of DNA damage response proteins at DNA breaks: a focus on protein modifications. Genes Dev 25:409–433. http://dx.doi.org/10.1101/gad.2021311.
  • Chen L, Huang S, Lee L, Davalos A, Schiestl RH, Campisi J, Oshima J. 2003. WRN, the protein deficient in Werner syndrome, plays a critical structural role in optimizing DNA repair. Aging Cell 2:191–199. http://dx.doi.org/10.1046/j.1474-9728.2003.00052.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.