109
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Morphogenesis of the Islets of Langerhans Is Guided by Extraendocrine Slit2 and Slit3 Signals

, , , & ORCID Icon
Article: e00451-20 | Received 26 Aug 2020, Accepted 07 Dec 2020, Published online: 03 Mar 2023

REFERENCES

  • Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M. 2009. Islet architecture: a comparative study. Islets 1:129–136. https://doi.org/10.4161/isl.1.2.9480.
  • Steiner DJ, Kim A, Miller K, Hara M. 2010. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets 2:135–145. https://doi.org/10.4161/isl.2.3.11815.
  • Dybala MP, Hara M. 2019. Heterogeneity of the human pancreatic islet. Diabetes 68:1230–1239. https://doi.org/10.2337/db19-0072.
  • Hoang DT, Matsunari H, Nagaya M, Nagashima H, Millis JM, Witkowski P, Periwal V, Hara M, Jo J. 2014. A conserved rule for pancreatic islet organization. PLoS One 9:e110384. https://doi.org/10.1371/journal.pone.0110384.
  • Baetens D, Stefan Y, Ravazzola M, Malaisse-Lagae F, Coleman DL, Orci L. 1978. Alteration of islet cell populations in spontaneously diabetic mice. Diabetes 27:1–7. [340309]. https://doi.org/10.2337/diab.27.1.1.
  • Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. 2006. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc Natl Acad Sci U S A 103:2334–2339. https://doi.org/10.1073/pnas.0510790103.
  • Kilimnik G, Zhao B, Jo J, Periwal V, Witkowski P, Misawa R, Hara M. 2011. Altered islet composition and disproportionate loss of large islets in patients with type 2 diabetes. PLoS One 6:e27445. https://doi.org/10.1371/journal.pone.0027445.
  • Roscioni SS, Migliorini A, Gegg M, Lickert H. 2016. Impact of islet architecture on beta-cell heterogeneity, plasticity and function. Nat Rev Endocrinol 12:695–709. https://doi.org/10.1038/nrendo.2016.147.
  • Blockus H, Chedotal A. 2016. Slit-Robo signaling. Development 143:3037–3044. https://doi.org/10.1242/dev.132829.
  • Chedotal A. 2007. Slits and their receptors. Adv Exp Med Biol 621:65–80. https://doi.org/10.1007/978-0-387-76715-4_5.
  • Wu MF, Liao CY, Wang LY, Chang JT. 2017. The role of Slit-Robo signaling in the regulation of tissue barriers. Tissue Barriers 5:e1331155. https://doi.org/10.1080/21688370.2017.1331155.
  • Ypsilanti AR, Chedotal A. 2014. Roundabout receptors. Adv Neurobiol 8:133–164. https://doi.org/10.1007/978-1-4614-8090-7_7.
  • Ypsilanti AR, Zagar Y, Chedotal A. 2010. Moving away from the midline: new developments for Slit and Robo. Development 137:1939–1952. https://doi.org/10.1242/dev.044511.
  • Brose K, Bland KS, Wang KH, Arnott D, Henzel W, Goodman CS, Tessier-Lavigne M, Kidd T. 1999. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 96:795–806. https://doi.org/10.1016/S0092-8674(00)80590-5.
  • Dickson BJ, Gilestro GF. 2006. Regulation of commissural axon pathfinding by slit and its Robo receptors. Annu Rev Cell Dev Biol 22:651–675. https://doi.org/10.1146/annurev.cellbio.21.090704.151234.
  • Rama N, Dubrac A, Mathivet T, Ni Charthaigh RA, Genet G, Cristofaro B, Pibouin-Fragner L, Ma L, Eichmann A, Chedotal A. 2015. Slit2 signaling through Robo1 and Robo2 is required for retinal neovascularization. Nat Med 21:483–491. https://doi.org/10.1038/nm.3849.
  • Zhang B, Dietrich UM, Geng JG, Bicknell R, Esko JD, Wang L. 2009. Repulsive axon guidance molecule Slit3 is a novel angiogenic factor. Blood 114:4300–4309. https://doi.org/10.1182/blood-2008-12-193326.
  • Delloye-Bourgeois C, Jacquier A, Charoy C, Reynaud F, Nawabi H, Thoinet K, Kindbeiter K, Yoshida Y, Zagar Y, Kong Y, Jones YE, Falk J, Chedotal A, Castellani V. 2015. PlexinA1 is a new Slit receptor and mediates axon guidance function of Slit C-terminal fragments. Nat Neurosci 18:36–45. https://doi.org/10.1038/nn.3893.
  • Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S, Kir S, Shinoda K, Tartaglia JA, Rao RR, Chedotal A, Kajimura S, Gygi SP, Spiegelman BM. 2016. A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function. Cell Metab 23:454–466. https://doi.org/10.1016/j.cmet.2016.01.008.
  • Wright KM, Lyon KA, Leung H, Leahy DJ, Ma L, Ginty DD. 2012. Dystroglycan organizes axon guidance cue localization and axonal pathfinding. Neuron 76:931–944. https://doi.org/10.1016/j.neuron.2012.10.009.
  • Hivert B, Liu Z, Chuang CY, Doherty P, Sundaresan V. 2002. Robo1 and Robo2 are homophilic binding molecules that promote axonal growth. Mol Cell Neurosci 21:534–545. https://doi.org/10.1006/mcne.2002.1193.
  • Leyva-Diaz E, del Toro D, Menal MJ, Cambray S, Susin R, Tessier-Lavigne M, Klein R, Egea J, Lopez-Bendito G. 2014. FLRT3 is a Robo1-interacting protein that determines Netrin-1 attraction in developing axons. Curr Biol 24:494–508. https://doi.org/10.1016/j.cub.2014.01.042.
  • Tong M, Jun T, Nie Y, Hao J, Fan D. 2019. The role of the Slit/Robo signaling pathway. J Cancer 10:2694–2705. https://doi.org/10.7150/jca.31877.
  • Adams MT, Gilbert JM, Hinojosa Paiz J, Bowman FM, Blum B. 2018. Endocrine cell type sorting and mature architecture in the islets of Langerhans require expression of Roundabout receptors in beta cells. Sci Rep 8:10876. https://doi.org/10.1038/s41598-018-29118-x.
  • Krentz NAJ, Lee MYY, Xu EE, Sproul SLJ, Maslova A, Sasaki S, Lynn FC. 2018. Single-cell transcriptome profiling of mouse and hESC-derived pancreatic progenitors. Stem Cell Rep 11:1551–1564. https://doi.org/10.1016/j.stemcr.2018.11.008.
  • Plump AS, Erskine L, Sabatier C, Brose K, Epstein CJ, Goodman CS, Mason CA, Tessier-Lavigne M. 2002. Slit1 and Slit2 cooperate to prevent premature midline crossing of retinal axons in the mouse visual system. Neuron 33:219–232. https://doi.org/10.1016/S0896-6273(01)00586-4.
  • Yuan W, Rao Y, Babiuk RP, Greer JJ, Wu JY, Ornitz DM. 2003. A genetic model for a central (septum transversum) congenital diaphragmatic hernia in mice lacking Slit3. Proc Natl Acad Sci U S A 100:5217–5222. https://doi.org/10.1073/pnas.0730709100.
  • Escot S, Willnow D, Naumann H, Di Francescantonio S, Spagnoli FM. 2018. Robo signalling controls pancreatic progenitor identity by regulating Tead transcription factors. Nat Commun 9:5082. https://doi.org/10.1038/s41467-018-07474-6.
  • Yang YH, Manning Fox JE, Zhang KL, MacDonald PE, Johnson JD. 2013. Intraislet SLIT-ROBO signaling is required for beta-cell survival and potentiates insulin secretion. Proc Natl Acad Sci U S A 110:16480–16485. https://doi.org/10.1073/pnas.1214312110.
  • Yuan W, Zhou L, Chen JH, Wu JY, Rao Y, Ornitz DM. 1999. The mouse SLIT family: secreted ligands for ROBO expressed in patterns that suggest a role in morphogenesis and axon guidance. Dev Biol 212:290–306. https://doi.org/10.1006/dbio.1999.9371.
  • Dybala MP, Butterfield JK, Hendren-Santiago BK, Hara M. 2020. Pancreatic islets and Gestalt principles. Diabetes 69:1864–1874. https://doi.org/10.2337/db20-0304.
  • Pan FC, Wright C. 2011. Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240:530–565. https://doi.org/10.1002/dvdy.22584.
  • Sharon N, Chawla R, Mueller J, Vanderhooft J, Whitehorn LJ, Rosenthal B, Gurtler M, Estanboulieh RR, Shvartsman D, Gifford DK, Trapnell C, Melton D. 2019. A peninsular structure coordinates asynchronous differentiation with morphogenesis to generate pancreatic islets. Cell 176:790–804. https://doi.org/10.1016/j.cell.2018.12.003.
  • Cozzitorto C, Mueller L, Ruzittu S, Mah N, Willnow D, Darrigrand JF, Wilson H, Khosravinia D, Mahmoud AA, Risolino M, Selleri L, Spagnoli FM. 2020. A specialized niche in the pancreatic microenvironment promotes endocrine differentiation. Dev Cell 55:150–162. https://doi.org/10.1016/j.devcel.2020.08.003.
  • Branchfield K, Nantie L, Verheyden JM, Sui P, Wienhold MD, Sun X. 2016. Pulmonary neuroendocrine cells function as airway sensors to control lung immune response. Science 351:707–710. https://doi.org/10.1126/science.aad7969.
  • Postic C, Shiota M, Niswender KD, Jetton TL, Chen Y, Moates JM, Shelton KD, Lindner J, Cherrington AD, Magnuson MA. 1999. Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase. J Biol Chem 274:305–315. https://doi.org/10.1074/jbc.274.1.305.
  • Blum B, Roose AN, Barrandon O, Maehr R, Arvanites AC, Davidow LS, Davis JC, Peterson QP, Rubin LL, Melton DA. 2014. Reversal of beta cell de-differentiation by a small molecule inhibitor of the TGFbeta pathway. Elife 3:e02809. https://doi.org/10.7554/eLife.02809.
  • Ingalls AM, Dickie MM, Snell GD. 1950. Obese, a new mutation in the house mouse. J Hered 41:317–318. https://doi.org/10.1093/oxfordjournals.jhered.a106073.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.