64
Views
159
CrossRef citations to date
0
Altmetric
Article

Removal of Oxidative DNA Damage via FEN1-Dependent Long-Patch Base Excision Repair in Human Cell Mitochondria

, , , , , , , , & show all
Pages 4975-4987 | Received 19 Mar 2008, Accepted 29 May 2008, Published online: 27 Mar 2023

REFERENCES

  • Akbari, M., T. Visnes, H. E. Krokan, and M. Otterlei. 2008. Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair (Amsterdam) 7:605–616.
  • Bender, A., K. J. Krishnan, C. M. Morris, G. A. Taylor, A. K. Reeve, R. H. Perry, E. Jaros, J. S. Hersheson, J. Betts, T. Klopstock, R. W. Taylor, and D. M. Turnbull. 2006. High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat. Genet. 38:515–517.
  • Bogenhagen, D. F. 1999. Repair of mtDNA in vertebrates. Am. J. Hum. Genet. 64:1276–1281.
  • Bogenhagen, D. F., D. Rousseau, and S. Burke. 2008. The layered structure of human mitochondrial DNA nucleoids. J. Biol. Chem. 283:3665–3675.
  • Bohr, V. A. 2002. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radic. Biol. Med. 32:804–812.
  • Bolender, N., A. Sickmann, R. Wagner, C. Meisinger, and N. Pfanner. 2008. Multiple pathways for sorting mitochondrial precursor proteins. EMBO Rep. 9:42–49.
  • Brandon, M., P. Baldi, and D. C. Wallace. 2006. Mitochondrial mutations in cancer. Oncogene 25:4647–4662.
  • Brown, T. A., C. Cecconi, A. N. Tkachuk, C. Bustamante, and D. A. Clayton. 2005. Replication of mitochondrial DNA occurs by strand displacement with alternative light-strand origins, not via a strand-coupled mechanism. Genes Dev. 19:2466–2476.
  • Chattopadhyay, R., L. Wiederhold, B. Szczesny, I. Boldogh, T. K. Hazra, T. Izumi, and S. Mitra. 2006. Identification and characterization of mitochondrial abasic (AP)-endonuclease in mammalian cells. Nucleic Acids Res. 34:2067–2076.
  • Chen, D., G. Cao, T. Hastings, Y. Feng, W. Pei, C. O'Horo, and J. Chen. 2002. Age-dependent decline of DNA repair activity for oxidative lesions in rat brain mitochondria. J. Neurochem. 81:1273–1284.
  • Clayton, D. A., J. N. Doda, and E. C. Friedberg. 1974. The absence of a pyrimidine dimer repair mechanism in mammalian mitochondria. Proc. Natl. Acad. Sci. USA 71:2777–2781.
  • Creighton, S., L. B. Bloom, and M. F. Goodman. 1995. Gel fidelity assay measuring nucleotide misinsertion, exonucleolytic proofreading, and lesion bypass efficiencies. Methods Enzymol. 262:232–256.
  • Croteau, D. L., R. H. Stierum, and V. A. Bohr. 1999. Mitochondrial DNA repair pathways. Mutat. Res. 434:137–148.
  • DeMott, M. S., E. Beyret, D. Wong, B. C. Bales, J. T. Hwang, M. M. Greenberg, and B. Demple. 2002. Covalent trapping of human DNA polymerase beta by the oxidative DNA lesion 2-deoxyribonolactone. J. Biol. Chem. 277:7637–7640.
  • Demple, B., and M. S. DeMott. 2002. Dynamics and diversions in base excision DNA repair of oxidized abasic lesions. Oncogene 21:8926–8934.
  • de Souza-Pinto, N. C., L. Eide, B. A. Hogue, T. Thybo, T. Stevnsner, E. Seeberg, A. Klungland, and V. A. Bohr. 2001. Repair of 8-oxodeoxyguanosine lesions in mitochondrial DNA depends on the oxoguanine DNA glycosylase (OGG1) gene and 8-oxoguanine accumulates in the mitochondrial DNA of OGG1-defective mice. Cancer Res. 61:5378–5381.
  • Fish, J., N. Raule, and G. Attardi. 2004. Discovery of a major D-loop replication origin reveals two modes of human mtDNA synthesis. Science 306:2098–2101.
  • Harman, D. 1956. Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11:298–300.
  • Harman, D. 1972. The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20:145–147.
  • Harrington, J. J., and M. R. Lieber. 1994. The characterization of a mammalian DNA structure-specific endonuclease. EMBO J. 13:1235–1246.
  • Hegler, J., D. Bittner, S. Boiteux, and B. Epe. 1993. Quantification of oxidative DNA modifications in mitochondria. Carcinogenesis 14:2309–2312.
  • Hirano, M., R. Marti, C. Ferreiro-Barros, M. R. Vila, S. Tadesse, Y. Nishigaki, I. Nishino, and T. H. Vu. 2001. Defects of intergenomic communication: autosomal disorders that cause multiple deletions and depletion of mitochondrial DNA. Semin. Cell Dev. Biol. 12:417–427.
  • Imlay, J. A., and S. Linn. 1986. Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. J. Bacteriol. 166:519–527.
  • Kao, H. I., L. A. Henricksen, Y. Liu, and R. A. Bambara. 2002. Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J. Biol. Chem. 277:14379–14389.
  • Kim, K., S. Biade, and Y. Matsumoto. 1998. Involvement of flap endonuclease 1 in base excision DNA repair. J. Biol. Chem. 273:8842–8848.
  • Klungland, A., and T. Lindahl. 1997. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 16:3341–3348.
  • Korhonen, J. A., X. H. Pham, M. Pellegrini, and M. Falkenberg. 2004. Reconstitution of a minimal mtDNA replisome in vitro. EMBO J. 23:2423–2429.
  • Kroeger, K. M., M. Hashimoto, Y. W. Kow, and M. M. Greenberg. 2003. Cross-linking of 2-deoxyribonolactone and its beta-elimination product by base excision repair enzymes. Biochemistry 42:2449–2455.
  • Kucherlapati, M., K. Yang, M. Kuraguchi, J. Zhao, M. Lia, J. Heyer, M. F. Kane, K. Fan, R. Russell, A. M. Brown, B. Kneitz, W. Edelmann, R. D. Kolodner, M. Lipkin, and R. Kucherlapati. 2002. Haploinsufficiency of Flap endonuclease (Fen1) leads to rapid tumor progression. Proc. Natl. Acad. Sci. USA 99:9924–9929.
  • Larsen, E., C. Gran, B. E. Saether, E. Seeberg, and A. Klungland. 2003. Proliferation failure and gamma radiation sensitivity of Fen1 null mutant mice at the blastocyst stage. Mol. Cell. Biol. 23:5346–5353.
  • LeDoux, S. P., N. M. Druzhyna, S. B. Hollensworth, J. F. Harrison, and G. L. Wilson. 2007. Mitochondrial DNA repair: a critical player in the response of cells of the CNS to genotoxic insults. Neuroscience 145:1249–1259.
  • Liu, R., J. Qiu, L. D. Finger, L. Zheng, and B. Shen. 2006. The DNA-protein interaction modes of FEN-1 with gap substrates and their implication in preventing duplication mutations. Nucleic Acids Res. 34:1772–1784.
  • Lu, T., Y. Pan, S. Y. Kao, C. Li, I. Kohane, J. Chan, and B. A. Yankner. 2004. Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891.
  • Matsumoto, Y., K. Kim, and D. F. Bogenhagen. 1994. Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair. Mol. Cell. Biol. 14:6187–6197.
  • Mecocci, P., U. MacGarvey, and M. F. Beal. 1994. Oxidative damage to mitochondrial DNA is increased in Alzheimer's disease. Ann. Neurol. 36:747–751.
  • Mecocci, P., U. MacGarvey, A. E. Kaufman, D. Koontz, J. M. Shoffner, D. C. Wallace, and M. F. Beal. 1993. Oxidative damage to mitochondrial DNA shows marked age-dependent increases in human brain. Ann. Neurol. 34:609–616.
  • Pinz, K. G., and D. F. Bogenhagen. 2000. Characterization of a catalytically slow AP lyase activity in DNA polymerase gamma and other family A DNA polymerases. J. Biol. Chem. 275:12509–12514.
  • Pinz, K. G., S. Shibutani, and D. F. Bogenhagen. 1995. Action of mitochondrial DNA polymerase gamma at sites of base loss or oxidative damage. J. Biol. Chem. 270:9202–9206.
  • Polidori, M. C., P. Mecocci, S. E. Browne, U. Senin, and M. F. Beal. 1999. Oxidative damage to mitochondrial DNA in Huntington's disease parietal cortex. Neurosci. Lett. 272:53–56.
  • Richter, C., J. W. Park, and B. N. Ames. 1988. Normal oxidative damage to mitochondrial and nuclear DNA is extensive. Proc. Natl. Acad. Sci. USA 85:6465–6467.
  • Robberson, D. L., H. Kasamatsu, and J. Vinograd. 1972. Replication of mitochondrial DNA. Circular replicative intermediates in mouse L cells. Proc. Natl. Acad. Sci. USA 69:737–741.
  • Roginskaya, M., W. A. Bernhard, R. T. Marion, and Y. Razskazovskiy. 2005. The release of 5-methylene-2-furanone from irradiated DNA catalyzed by cationic polyamines and divalent metal cations. Radiat. Res. 163:85–89.
  • Roupioz, Y., J. Lhomme, and M. Kotera. 2002. Chemistry of the 2-deoxyribonolactone lesion in oligonucleotides: cleavage kinetics and products analysis. J. Am. Chem. Soc. 124:9129–9135.
  • Santos, J. H., J. N. Meyer, B. S. Mandavilli, and B. Van Houten. 2006. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 314:183–199.
  • Shen, B., P. Singh, R. Liu, J. Qiu, L. Zheng, L. D. Finger, and S. Alas. 2005. Multiple but dissectible functions of FEN-1 nucleases in nucleic acid processing, genome stability and diseases. Bioessays 27:717–729.
  • Singh, P., L. Zheng, V. Chavez, J. Qiu, and B. Shen. 2007. Concerted action of exonuclease and Gap-dependent endonuclease activities of FEN-1 contributes to the resolution of triplet repeat sequences (CTG)n- and (GAA)n-derived secondary structures formed during maturation of Okazaki fragments. J. Biol. Chem. 282:3465–3477.
  • Sohal, R. S., and R. Weindruch. 1996. Oxidative stress, caloric restriction, and aging. Science 273:59–63.
  • Stierum, R. H., G. L. Dianov, and V. A. Bohr. 1999. Single-nucleotide patch base excision repair of uracil in DNA by mitochondrial protein extracts. Nucleic Acids Res. 27:3712–3719.
  • Stuart, J. A., B. M. Bourque, N. C. de Souza-Pinto, and V. A. Bohr. 2005. No evidence of mitochondrial respiratory dysfunction in OGG1-null mice deficient in removal of 8-oxodeoxyguanine from mitochondrial DNA. Free Radic. Biol. Med. 38:737–745.
  • Stuart, J. A., K. Hashiguchi, D. M. Wilson III, W. C. Copeland, N. C. Souza-Pinto, and V. A. Bohr. 2004. DNA base excision repair activities and pathway function in mitochondrial and cellular lysates from cells lacking mitochondrial DNA. Nucleic Acids Res. 32:2181–2192.
  • Sung, J. S., M. S. DeMott, and B. Demple. 2005. Long-patch base excision DNA repair of 2-deoxyribonolactone prevents the formation of DNA-protein cross-links with DNA polymerase beta. J. Biol. Chem. 280:39095–39103.
  • Sung, J. S., and B. Demple. 2006. Roles of base excision repair subpathways in correcting oxidized abasic sites in DNA. FEBS J. 273:1620–1629.
  • Taylor, R. W., and D. M. Turnbull. 2005. Mitochondrial DNA mutations in human disease. Nat. Rev. Genet. 6:389–402.
  • Thyagarajan, B., R. A. Padua, and C. Campbell. 1996. Mammalian mitochondria possess homologous DNA recombination activity. J. Biol. Chem. 271:27536–27543.
  • Vodenicharov, M. D., F. R. Sallmann, M. S. Satoh, and G. G. Poirier. 2000. Base excision repair is efficient in cells lacking poly(ADP-ribose) polymerase 1. Nucleic Acids Res. 28:3887–3896.
  • Wallace, D. C. 2005. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39:359–407.
  • Xu, Y. J., M. S. DeMott, J. T. Hwang, M. M. Greenberg, and B. Demple. 2003. Action of human apurinic endonuclease (Ape1) on C1′-oxidized deoxyribose damage in DNA. DNA Repair (Amsterdam) 2:175–185.
  • Yakubovskaya, E., Z. Chen, J. A. Carrodeguas, C. Kisker, and D. F. Bogenhagen. 2006. Functional human mitochondrial DNA polymerase gamma forms a heterotrimer. J. Biol. Chem. 281:374–382.
  • Yang, M. Y., M. Bowmaker, A. Reyes, L. Vergani, P. Angeli, E. Gringeri, H. T. Jacobs, and I. J. Holt. 2002. Biased incorporation of ribonucleotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 111:495–505.
  • Zheng, L., H. Dai, J. Qiu, Q. Huang, and B. Shen. 2007. Disruption of the FEN-1/PCNA interaction results in DNA replication defects, pulmonary hypoplasia, pancytopenia, and newborn lethality in mice. Mol. Cell. Biol. 27:3176–3186.
  • Zheng, L., H. Dai, M. Zhou, M. Li, P. Singh, J. Qiu, W. Tsark, Q. Huang, K. Kernstine, X. Zhang, D. Lin, and B. Shen. 2007. Fen1 mutations result in autoimmunity, chronic inflammation and cancers. Nat. Med. 13:812–819.
  • Zuckerman, S. H., J. F. Solus, F. P. Gillespie, and J. M. Eisenstadt. 1984. Retention of both parental mitochondrial DNA species in mouse-Chinese hamster somatic cell hybrids. Somat. Cell Mol. Genet. 10:85–91.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.