39
Views
7
CrossRef citations to date
0
Altmetric
Research Article

SRC Increases MYC mRNA Expression in Estrogen Receptor-Positive Breast Cancer via mRNA Stabilization and Inhibition of p53 Function

, , &
Article: e00463-17 | Received 30 Aug 2017, Accepted 06 Dec 2017, Published online: 03 Mar 2023

REFERENCES

  • Liao DJ, Dickson RB. 2000. c-Myc in breast cancer. Endocr Relat Cancer 7:143–164. https://doi.org/10.1677/erc.0.0070143.
  • Dubik D, Shiu RP. 1988. Transcriptional regulation of c-myc oncogene expression by estrogen in hormone-responsive human breast cancer cells. J Biol Chem 263:12705–12708.
  • Santos GF, Scott GK, Lee WM, Liu E, Benz C. 1988. Estrogen-induced post-transcriptional modulation of c-myc proto-oncogene expression in human breast cancer cells. J Biol Chem 263:9565–9568.
  • Zou X, Lin Y, Rudchenko S, Calame K. 1997. Positive and negative regulation of c-Myc transcription. Curr Top Microbiol Immunol 224:57–66.
  • Blanchard JM, Piechaczyk M, Dani C, Chambard JC, Franchi A, Pouyssegur J, Jeanteur P. 1985. c-myc gene is transcribed at high rate in G0-arrested fibroblasts and is post-transcriptionally regulated in response to growth factors. Nature 317:443–445. https://doi.org/10.1038/317443a0.
  • Dean M, Levine RA, Ran W, Kindy MS, Sonenshein GE, Campisi J. 1986. Regulation of c-myc transcription and mRNA abundance by serum growth factors and cell contact. J Biol Chem 261:9161–9166.
  • Kindy MS, Sonenshein GE. 1986. Regulation of oncogene expression in cultured aortic smooth muscle cells. Post-transcriptional control of c-myc mRNA. J Biol Chem 261:12865–12868.
  • Nepveu A, Levine RA, Campisi J, Greenberg ME, Ziff EB, Marcu KB. 1987. Alternative modes of c-myc regulation in growth factor-stimulated and differentiating cells. Oncogene 1:243–250.
  • Sears R, Leone G, DeGregori J, Nevins JR. 1999. Ras enhances Myc protein stability. Mol Cell 3:169–179. https://doi.org/10.1016/S1097-2765(00)80308-1.
  • Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR. 2000. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14:2501–2514. https://doi.org/10.1101/gad.836800.
  • Dubik D, Dembinski TC, Shiu RP. 1987. Stimulation of c-myc oncogene expression associated with estrogen-induced proliferation of human breast cancer cells. Cancer Res 47:6517–6521.
  • Dubik D, Shiu RP. 1992. Mechanism of estrogen activation of c-myc oncogene expression. Oncogene 7:1587–1594.
  • Shiu RP, Watson PH, Dubik D. 1993. c-myc oncogene expression in estrogen-dependent and -independent breast cancer. Clin Chem 39:353–355.
  • Wang C, Mayer JA, Mazumdar A, Fertuck K, Kim H, Brown M, Brown PH. 2011. Estrogen induces c-myc gene expression via an upstream enhancer activated by the estrogen receptor and the AP-1 transcription factor. Mol Endocrinol 25:1527–1538. https://doi.org/10.1210/me.2011-1037.
  • Ioannidis P, Mahaira LG, Perez SA, Gritzapis AD, Sotiropoulou PA, Kavalakis GJ, Antsaklis AI, Baxevanis CN, Papamichail M. 2005. CRD-BP/IMP1 expression characterizes cord blood CD34+ stem cells and affects c-myc and IGF-II expression in MCF-7 cancer cells. J Biol Chem 280:20086–20093. https://doi.org/10.1074/jbc.M410036200.
  • Lemm I, Ross J. 2002. Regulation of c-myc mRNA decay by translational pausing in a coding region instability determinant. Mol Cell Biol 22:3959–3969. https://doi.org/10.1128/MCB.22.12.3959-3969.2002.
  • Noubissi FK, Elcheva I, Bhatia N, Shakoori A, Ougolkov A, Liu J, Minamoto T, Ross J, Fuchs SY, Spiegelman VS. 2006. CRD-BP mediates stabilization of βTrCP1 and c-myc mRNA in response to β-catenin signalling. Nature 441:898–901. https://doi.org/10.1038/nature04839.
  • Sparanese D, Lee CH. 2007. CRD-BP shields c-myc and MDR-1 RNA from endonucleolytic attack by a mammalian endoribonuclease. Nucleic Acids Res 35:1209–1221. https://doi.org/10.1093/nar/gkl1148.
  • Weidensdorfer D, Stöhr N, Baude A, Lederer M, Köhn M, Schierhorn A, Buchmeier S, Wahle E, Hüttelmaier S. 2009. Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA 15:104–115. https://doi.org/10.1261/rna.1175909.
  • Guhaniyogi J, Brewer G. 2001. Regulation of mRNA stability in mammalian cells. Gene 265:11–23. https://doi.org/10.1016/S0378-1119(01)00350-X.
  • Ross J. 1995. mRNA stability in mammalian cells. Microbiol Rev 59:423–450.
  • Barnes M, van Rensburg G, Li WM, Mehmood K, Mackedenski S, Chan CM, King DT, Miller AL, Lee CH. 2015. Molecular insights into the coding region determinant-binding protein-RNA interaction through site-directed mutagenesis in the heterogeneous nuclear ribonucleoprotein-K-homology domains. J Biol Chem 290:625–639. https://doi.org/10.1074/jbc.M114.614735.
  • Marderosian M, Sharma A, Funk AP, Vartanian R, Masri J, Jo OD, Gera JF. 2006. Tristetraprolin regulates cyclin D1 and c-myc mRNA stability in response to rapamycin in an Akt-dependent manner via p38 MAPK signaling. Oncogene 25:6277–6290. https://doi.org/10.1038/sj.onc.1209645.
  • Rounbehler RJ, Fallahi M, Yang C, Steeves MA, Li W, Doherty JR, Schaub FX, Sanduja S, Dixon DA, Blackshear PJ, Cleveland JL. 2012. Tristetraprolin impairs myc-induced lymphoma and abolishes the malignant state. Cell 150:563–574. https://doi.org/10.1016/j.cell.2012.06.033.
  • Ioannidis P, Kottaridi C, Dimitriadis E, Courtis N, Mahaira L, Talieri M, Giannopoulos A, Iliadis K, Papaioannou D, Nasioulas G, Trangas T. 2004. Expression of the RNA-binding protein CRD-BP in brain and non-small cell lung tumors. Cancer Lett 209:245–250. https://doi.org/10.1016/j.canlet.2003.12.015.
  • Ioannidis P, Mahaira L, Papadopoulou A, Teixeira MR, Heim S, Andersen JA, Evangelou E, Dafni U, Pandis N, Trangas T. 2003. 8q24 Copy number gains and expression of the c-myc mRNA stabilizing protein CRD-BP in primary breast carcinomas. Int J Cancer 104:54–59. https://doi.org/10.1002/ijc.10794.
  • Köbel M, Weidensdorfer D, Reinke C, Lederer M, Schmitt WD, Zeng K, Thomssen C, Hauptmann S, Hüttelmaier S. 2007. Expression of the RNA-binding protein IMP1 correlates with poor prognosis in ovarian carcinoma. Oncogene 26:7584–7589. https://doi.org/10.1038/sj.onc.1210563.
  • Bell JL, Wachter K, Muhleck B, Pazaitis N, Kohn M, Lederer M, Huttelmaier S. 2013. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci 70:2657–2675. https://doi.org/10.1007/s00018-012-1186-z.
  • Fakhraldeen SA, Clark RJ, Roopra A, Chin EN, Huang W, Castorino J, Wisinski KB, Kim T, Spiegelman VS, Alexander CM. 2015. Two isoforms of the RNA binding protein, coding region determinant-binding protein (CRD-BP/IGF2BP1), are expressed in breast epithelium and support clonogenic growth of breast tumor cells. J Biol Chem 290:13386–13400. https://doi.org/10.1074/jbc.M115.655175.
  • DeMayo FJ, Zhao B, Takamoto N, Tsai SY. 2002. Mechanisms of action of estrogen and progesterone. Ann N Y Acad Sci 955:48–59. https://doi.org/10.1111/j.1749-6632.2002.tb02765.x.
  • Fox EM, Andrade J, Shupnik MA. 2009. Novel actions of estrogen to promote proliferation: integration of cytoplasmic and nuclear pathways. Steroids 74:622–627. https://doi.org/10.1016/j.steroids.2008.10.014.
  • Hammes SR, Levin ER. 2007. Extranuclear steroid receptors: nature and actions. Endocr Rev 28:726–741. https://doi.org/10.1210/er.2007-0022.
  • Marino M, Galluzzo P, Ascenzi P. 2006. Estrogen signaling multiple pathways to impact gene transcription. Curr Genomics 7:497–508. https://doi.org/10.2174/138920206779315737.
  • Shupnik MA. 2004. Crosstalk between steroid receptors and the c-Src-receptor tyrosine kinase pathways: implications for cell proliferation. Oncogene 23:7979–7989. https://doi.org/10.1038/sj.onc.1208076.
  • Song RX, Zhang Z, Santen RJ. 2005. Estrogen rapid action via protein complex formation involving ERα and Src. Trends Endocrinol Metab 16:347–353. https://doi.org/10.1016/j.tem.2005.06.010.
  • DeNardo DG, Cuba VL, Kim H, Wu K, Lee AV, Brown PH. 2007. Estrogen receptor DNA binding is not required for estrogen-induced breast cell growth. Mol Cell Endocrinol 277:13–25. https://doi.org/10.1016/j.mce.2007.07.006.
  • Castoria G, Barone MV, Di Domenico M, Bilancio A, Ametrano D, Migliaccio A, Auricchio F. 1999. Non-transcriptional action of oestradiol and progestin triggers DNA synthesis. EMBO J 18:2500–2510. https://doi.org/10.1093/emboj/18.9.2500.
  • Barone MV, Courtneidge SA. 1995. Myc but not Fos rescue of PDGF signalling block caused by kinase-inactive Src. Nature 378:509–512. https://doi.org/10.1038/378509a0.
  • Bromann PA, Korkaya H, Webb CP, Miller J, Calvin TL, Courtneidge SA. 2005. Platelet-derived growth factor stimulates Src-dependent mRNA stabilization of specific early genes in fibroblasts. J Biol Chem 280:10253–10263. https://doi.org/10.1074/jbc.M413806200.
  • Arnold SF, Obourn JD, Jaffe H, Notides AC. 1995. Phosphorylation of the human estrogen receptor on tyrosine 537 in vivo and by src family tyrosine kinases in vitro. Mol Endocrinol 9:24–33. https://doi.org/10.1210/mend.9.1.7539106.
  • Kim H, Laing M, Muller W. 2005. c-Src-null mice exhibit defects in normal mammary gland development and ERα signaling. Oncogene 24:5629–5636. https://doi.org/10.1038/sj.onc.1208718.
  • González L, Agulló-Ortuño MT, García-Martínez JM, Calcabrini A, Gamallo C, Palacios J, Aranda A, Martín-Pérez J. 2006. Role of c-Src in human MCF7 breast cancer cell tumorigenesis. J Biol Chem 281:20851–20864. https://doi.org/10.1074/jbc.M601570200.
  • Castoria G, Giovannelli P, Lombardi M, De Rosa C, Giraldi T, de Falco A, Barone MV, Abbondanza C, Migliaccio A, Auricchio F. 2012. Tyrosine phosphorylation of estradiol receptor by Src regulates its hormone-dependent nuclear export and cell cycle progression in breast cancer cells. Oncogene 31:4868–4877. https://doi.org/10.1038/onc.2011.642.
  • Broome MA, Courtneidge SA. 2000. No requirement for src family kinases for PDGF signaling in fibroblasts expressing SV40 large T antigen. Oncogene 19:2867–2869. https://doi.org/10.1038/sj.onc.1203608.
  • Caleffi M, Teague MW, Jensen RA, Vnencak-Jones CL, Dupont WD, Parl FF. 1994. p53 gene mutations and steroid receptor status in breast cancer. Clinicopathologic correlations and prognostic assessment. Cancer 73:2147–2156.
  • Dumay A, Feugeas JP, Wittmer E, Lehmann-Che J, Bertheau P, Espie M, Plassa LF, Cottu P, Marty M, Andre F, Sotiriou C, Pusztai L, de The H. 2013. Distinct tumor protein p53 mutants in breast cancer subgroups. Int J Cancer 132:1227–1231. https://doi.org/10.1002/ijc.27767.
  • Bailey ST, Shin H, Westerling T, Liu XS, Brown M. 2012. Estrogen receptor prevents p53-dependent apoptosis in breast cancer. Proc Natl Acad Sci U S A 109:18060–18065. https://doi.org/10.1073/pnas.1018858109.
  • Berger CE, Qian Y, Liu G, Chen H, Chen X. 2012. p53, a target of estrogen receptor (ER) alpha, modulates DNA damage-induced growth suppression in ER-positive breast cancer cells. J Biol Chem 287:30117–30127. https://doi.org/10.1074/jbc.M112.367326.
  • Konduri SD, Medisetty R, Liu W, Kaipparettu BA, Srivastava P, Brauch H, Fritz P, Swetzig WM, Gardner AE, Khan SA, Das GM. 2010. Mechanisms of estrogen receptor antagonism toward p53 and its implications in breast cancer therapeutic response and stem cell regulation. Proc Natl Acad Sci U S A 107:15081–15086. https://doi.org/10.1073/pnas.1009575107.
  • Liu W, Konduri SD, Bansal S, Nayak BK, Rajasekaran SA, Karuppayil SM, Rajasekaran AK, Das GM. 2006. Estrogen receptor-alpha binds p53 tumor suppressor protein directly and represses its function. J Biol Chem 281:9837–9840. https://doi.org/10.1074/jbc.C600001200.
  • Menendez D, Inga A, Resnick MA. 2010. Estrogen receptor acting in cis enhances WT and mutant p53 transactivation at canonical and noncanonical p53 target sequences. Proc Natl Acad Sci U S A 107:1500–1505. https://doi.org/10.1073/pnas.0909129107.
  • Guan H, Laird AD, Blake RA, Tang C, Liang C. 2004. Design and synthesis of aminopropyl tetrahydroindole-based indolin-2-ones as selective and potent inhibitors of Src and Yes tyrosine kinase. Bioorg Med Chem Lett 14:187–190. https://doi.org/10.1016/j.bmcl.2003.09.069.
  • Blake RA, Broome MA, Liu X, Wu J, Gishizky M, Sun L, Courtneidge SA. 2000. SU6656, a selective src family kinase inhibitor, used to probe growth factor signaling. Mol Cell Biol 20:9018–9027. https://doi.org/10.1128/MCB.20.23.9018-9027.2000.
  • Watson PH, Pon RT, Shiu RP. 1991. Inhibition of c-myc expression by phosphorothioate antisense oligonucleotide identifies a critical role for c-myc in the growth of human breast cancer. Cancer Res 51:3996–4000.
  • Brown AM, Jeltsch JM, Roberts M, Chambon P. 1984. Activation of pS2 gene transcription is a primary response to estrogen in the human breast cancer cell line MCF-7. Proc Natl Acad Sci U S A 81:6344–6348.
  • Kim J, Petz LN, Ziegler YS, Wood JR, Potthoff SJ, Nardulli AM. 2000. Regulation of the estrogen-responsive pS2 gene in MCF-7 human breast cancer cells. J Steroid Biochem Mol Biol 74:157–168. https://doi.org/10.1016/S0960-0760(00)00119-9.
  • Kim T, Havighurst T, Kim K, Hebbring SJ, Ye Z, Aylward J, Keles S, Xu YG, Spiegelman VS. 2017. RNA-binding protein IGF2BP1 in cutaneous squamous cell carcinoma. J Investig Dermatol 137:772–775. https://doi.org/10.1016/j.jid.2016.10.042.
  • Hüttelmaier S, Zenklusen D, Lederer M, Dictenberg J, Lorenz M, Meng X, Bassell GJ, Condeelis J, Singer RH. 2005. Spatial regulation of β-actin translation by Src-dependent phosphorylation of ZBP1. Nature 438:512–515. https://doi.org/10.1038/nature04115.
  • Roche S, Koegl M, Barone MV, Roussel MF, Courtneidge SA. 1995. DNA synthesis induced by some but not all growth factors requires Src family protein tyrosine kinases. Mol Cell Biol 15:1102–1109. https://doi.org/10.1128/MCB.15.2.1102.
  • Twamley-Stein GM, Pepperkok R, Ansorge W, Courtneidge SA. 1993. The Src family tyrosine kinases are required for platelet-derived growth factor-mediated signal transduction in NIH 3T3 cells. Proc Natl Acad Sci U S A 90:7696–7700.
  • Ioannidis P, Trangas T, Dimitriadis E, Samiotaki M, Kyriazoglou I, Tsiapalis CM, Kittas C, Agnantis N, Nielsen FC, Nielsen J, Christiansen J, Pandis N. 2001. C-MYC and IGF-II mRNA-binding protein (CRD-BP/IMP-1) in benign and malignant mesenchymal tumors. Int J Cancer 94:480–484. https://doi.org/10.1002/ijc.1512.
  • Sachdeva M, Zhu S, Wu F, Wu H, Walia V, Kumar S, Elble R, Watabe K, Mo Y-Y. 2009. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A 106:3207–3212. https://doi.org/10.1073/pnas.0808042106.
  • Chang T-C, Wentzel EA, Kent OA, Ramachandran K, Mullendore M, Lee KH, Feldmann G, Yamakuchi M, Ferlito M, Lowenstein CJ, Arking DE, Beer MA, Maitra A, Mendell JT. 2007. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26:745–752. https://doi.org/10.1016/j.molcel.2007.05.010.
  • Yamamura S, Saini S, Majid S, Hirata H, Ueno K, Deng G, Dahiya R. 2012. MicroRNA-34a modulates c-Myc transcriptional complexes to suppress malignancy in human prostate cancer cells. PLoS One 7:e29722. https://doi.org/10.1371/journal.pone.0029722.
  • Quintavalle M, Elia L, Condorelli G, Courtneidge SA. 2010. MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol 189:13–22. https://doi.org/10.1083/jcb.200912096.
  • Guy CT, Cardiff RD, Muller WJ. 1992. Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12:954–961. https://doi.org/10.1128/MCB.12.3.954.
  • Guy CT, Muthuswamy SK, Cardiff RD, Soriano P, Muller WJ. 1994. Activation of the c-Src tyrosine kinase is required for the induction of mammary tumors in transgenic mice. Genes Dev 8:23–32. https://doi.org/10.1101/gad.8.1.23.
  • Marcotte R, Smith HW, Sanguin-Gendreau V, McDonough RV, Muller WJ. 2012. Mammary epithelial-specific disruption of c-Src impairs cell cycle progression and tumorigenesis. Proc Natl Acad Sci U S A 109:2808–2813. https://doi.org/10.1073/pnas.1018861108.
  • Elsberger B. 2014. Translational evidence on the role of Src kinase and activated Src kinase in invasive breast cancer. Crit Rev Oncol Hematol 89:343–351. https://doi.org/10.1016/j.critrevonc.2013.12.009.
  • Ottenhoff-Kalff AE, Rijksen G, van Beurden EA, Hennipman A, Michels AA, Staal GE. 1992. Characterization of protein tyrosine kinases from human breast cancer: involvement of the c-src oncogene product. Cancer Res 52:4773–4778.
  • Verbeek BS, Vroom TM, Adriaansen-Slot SS, Ottenhoff-Kalff AE, Geertzema JG, Hennipman A, Rijksen G. 1996. c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis. J Pathol 180:383–388.
  • Morgan L, Gee J, Pumford S, Farrow L, Finlay P, Robertson J, Ellis I, Kawakatsu H, Nicholson R, Hiscox S. 2009. Elevated Src kinase activity attenuates Tamoxifen response in vitro and is associated with poor prognosis clinically. Cancer Biol Ther 8:1550–1558. https://doi.org/10.4161/cbt.8.16.8954.
  • Planas-Silva MD, Bruggeman RD, Grenko RT, Stanley Smith J. 2006. Role of c-Src and focal adhesion kinase in progression and metastasis of estrogen receptor-positive breast cancer. Biochem Biophys Res Commun 341:73–81. https://doi.org/10.1016/j.bbrc.2005.12.164.
  • Mayer EL, Baurain JF, Sparano J, Strauss L, Campone M, Fumoleau P, Rugo H, Awada A, Sy O, Llombart-Cussac A. 2011. A phase 2 trial of dasatinib in patients with advanced HER2-positive and/or hormone receptor-positive breast cancer. Clin Cancer Res 17:6897–6904. https://doi.org/10.1158/1078-0432.CCR-11-0070.
  • Mitri Z, Nanda R, Blackwell K, Costelloe CM, Hood I, Wei C, Brewster AM, Ibrahim NK, Koenig KB, Hortobagyi GN, Van Poznak C, Rimawi MF, Moulder-Thompson S. 2016. TBCRC-010: phase I/II study of dasatinib in combination with zoledronic acid for the treatment of breast cancer bone metastasis. Clin Cancer Res 22:5706–5712. https://doi.org/10.1158/1078-0432.CCR-15-2845.
  • Campone M, Bondarenko I, Brincat S, Hotko Y, Munster PN, Chmielowska E, Fumoleau P, Ward R, Bardy-Bouxin N, Leip E, Turnbull K, Zacharchuk C, Epstein RJ. 2012. Phase II study of single-agent bosutinib, a Src/Abl tyrosine kinase inhibitor, in patients with locally advanced or metastatic breast cancer pretreated with chemotherapy. Ann Oncol 23:610–617. https://doi.org/10.1093/annonc/mdr261.
  • Batuello CN, Hauck PM, Gendron JM, Lehman JA, Mayo LD. 2015. Src phosphorylation converts Mdm2 from a ubiquitinating to a neddylating E3 ligase. Proc Natl Acad Sci U S A 112:1749–1754. https://doi.org/10.1073/pnas.1416656112.
  • Montes de Oca Luna R, Wagner DS, Lozano G. 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206. https://doi.org/10.1038/378203a0.
  • Jones SN, Roe AE, Donehower LA, Bradley A. 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208. https://doi.org/10.1038/378206a0.
  • Dabydeen SA, Furth PA. 2014. Genetically engineered ERalpha-positive breast cancer mouse models. Endocr Relat Cancer 21:R195–R208. https://doi.org/10.1530/ERC-13-0512.
  • Mohibi S, Mirza S, Band H, Band V. 2011. Mouse models of estrogen receptor-positive breast cancer. J Carcinog 10:35. https://doi.org/10.4103/1477-3163.91116.
  • Matthews SB, Sartorius CA. 2017. Steroid hormone receptor positive breast cancer patient-derived xenografts. Horm Cancer 8:4–15. https://doi.org/10.1007/s12672-016-0275-0.
  • Kanaya N, Somlo G, Wu J, Frankel P, Kai M, Liu X, Wu SV, Nguyen D, Chan N, Hsieh MY, Kirschenbaum M, Kruper L, Vito C, Badie B, Yim JH, Yuan Y, Hurria A, Peiguo C, Mortimer J, Chen S. 2017. Characterization of patient-derived tumor xenografts (PDXs) as models for estrogen receptor positive (ER+HER2− and ER+HER2+) breast cancers. J Steroid Biochem Mol Biol 170:65–74. https://doi.org/10.1016/j.jsbmb.2016.05.001.
  • Hebbard L, Cecena G, Golas J, Sawada J, Ellies LG, Charbono A, Williams R, Jimenez RE, Wankell M, Arndt KT, DeJoy SQ, Rollins RA, Diesl V, Follettie M, Chen L, Rosfjord E, Cardiff RD, Komatsu M, Boschelli F, Oshima RG. 2011. Control of mammary tumor differentiation by SKI-606 (bosutinib). Oncogene 30:301–312. https://doi.org/10.1038/onc.2010.412.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.