96
Views
37
CrossRef citations to date
0
Altmetric
Minireview

Nuclear Lamins and Neurobiology

, , &
Pages 2776-2785 | Published online: 20 Mar 2023

REFERENCES

  • Muchir A, Worman HJ. 2004. The nuclear envelope and human disease. Physiology (Bethesda) 19:309–314. http://dx.doi.org/10.1152/physiol.00022.2004.
  • Worman HJ, Bonne G. 2007. “Laminopathies”: a wide spectrum of human diseases. Exp. Cell Res. 313:2121–2133. http://dx.doi.org/10.1016/j.yexcr.2007.03.028.
  • Worman HJ, Fong LG, Muchir A, Young SG. 2009. Laminopathies and the long strange trip from basic cell biology to therapy. J. Clin. Invest. 119:1825–1836. http://dx.doi.org/10.1172/JCI37679.
  • Broers JL, Ramaekers FC, Bonne G, Yaou RB, Hutchison CJ. 2006. Nuclear lamins: laminopathies and their role in premature ageing. Physiol. Rev. 86:967–1008. http://dx.doi.org/10.1152/physrev.00047.2005.
  • Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL. 2005. The nuclear lamina comes of age. Nat. Rev. Mol. Cell Biol. 6:21–31. http://dx.doi.org/10.1038/nrm1550.
  • Dechat T, Pfleghaar K, Sengupta K, Shimi T, Shumaker DK, Solimando L, Goldman RD. 2008. Nuclear lamins: major factors in the structural organization and function of the nucleus and chromatin. Genes Dev. 22:832–853. http://dx.doi.org/10.1101/gad.1652708.
  • Burke B, Stewart CL. 2013. The nuclear lamins: flexibility in function. Nat. Rev. Mol. Cell Biol. 14:13–24. http://dx.doi.org/10.1038/nrm3488.
  • Young SG, Fong LG, Michaelis S. 2005. Prelamin A, Zmpste24, misshapen cell nuclei, and progeria—new evidence suggesting that protein farnesylation could be important for disease pathogenesis. J. Lipid Res. 46:2531–2558. http://dx.doi.org/10.1194/jlr.R500011-JLR200.
  • Davies BS, Coffinier C, Yang SH, Barnes RHII, Jung HJ, Young SG, Fong LG. 2011. Investigating the purpose of prelamin A processing. Nucleus 2:4–9. http://dx.doi.org/10.4161/nucl.2.1.13723.
  • Young SG, Yang SH, Davies BS, Jung HJ, Fong LG. 2013. Targeting protein prenylation in progeria. Sci. Transl. Med. 5:171ps173. http://dx.doi.org/10.1126/scitranslmed.3005229.
  • Davies BS, Fong LG, Yang SH, Coffinier C, Young SG. 2009. The posttranslational processing of prelamin A and disease. Annu. Rev. Genomics Hum. Genet. 10:153–174. http://dx.doi.org/10.1146/annurev-genom-082908-150150.
  • Coffinier C, Chang SY, Nobumori C, Tu Y, Farber EA, Toth JI, Fong LG, Young SG. 2010. Abnormal development of the cerebral cortex and cerebellum in the setting of lamin B2 deficiency. Proc. Natl. Acad. Sci. U. S. A. 107:5076–5081. http://dx.doi.org/10.1073/pnas.0908790107.
  • Coffinier C, Fong LG, Young SG. 2010. LINCing lamin B2 to neuronal migration: growing evidence for cell-specific roles of B-type lamins. Nucleus 1:407–411. http://dx.doi.org/10.4161/nucl.1.5.12830.
  • Coffinier C, Jung HJ, Nobumori C, Chang S, Tu Y, Barnes RHII, Yoshinaga Y, de Jong PJ, Vergnes L, Reue K, Fong LG, Young SG. 2011. Deficiencies in lamin B1 and lamin B2 cause neurodevelopmental defects and distinct nuclear shape abnormalities in neurons. Mol. Biol. Cell 22:4683–4693. http://dx.doi.org/10.1091/mbc.E11-06-0504.
  • Padiath QS, Fu YH. 2010. Autosomal dominant leukodystrophy caused by lamin B1 duplications a clinical and molecular case study of altered nuclear function and disease. Methods Cell Biol. 98:337–357. http://dx.doi.org/10.1016/S0091-679X(10)98014-X.
  • Padiath QS, Saigoh K, Schiffmann R, Asahara H, Yamada T, Koeppen A, Hogan K, Ptacek LJ, Fu YH. 2006. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat. Genet. 38:1114–1123. http://dx.doi.org/10.1038/ng1872.
  • Jung HJ, Tu Y, Yang SH, Tatar A, Nobumori C, Wu D, Young SG, Fong LG. 2014. New Lmna knock-in mice provide a molecular mechanism for the ‘segmental aging' in Hutchinson-Gilford progeria syndrome. Hum. Mol. Genet. 23:1506–1515. http://dx.doi.org/10.1093/hmg/ddt537.
  • Jung HJ, Coffinier C, Choe Y, Beigneux AP, Davies BS, Yang SH, Barnes RHII, Hong J, Sun T, Pleasure SJ, Young SG, Fong LG. 2012. Regulation of prelamin A but not lamin C by miR-9, a brain-specific microRNA. Proc. Natl. Acad. Sci. U. S. A. 109:E423–E431. http://dx.doi.org/10.1073/pnas.1111780109.
  • Eriksson M, Brown WT, Gordon LB, Glynn MW, Singer J, Scott L, Erdos MR, Robbins CM, Moses TY, Berglund P, Dutra A, Pak E, Durkin S, Csoka AB, Boehnke M, Glover TW, Collins FS. 2003. Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–298. http://dx.doi.org/10.1038/nature01629.
  • Lin F, Worman HJ. 1993. Structural organization of the human gene encoding nuclear lamin A and nuclear lamin C. J. Biol. Chem. 268:16321–16326.
  • Lin F, Worman HJ. 1995. Structural organization of the human gene (LMNB1) encoding nuclear lamin B1. Genomics 27:230–236. http://dx.doi.org/10.1006/geno.1995.1036.
  • Biamonti G, Giacca M, Perini G, Contreas G, Zentilin L, Weighardt F, Guerra M, Della Valle G, Saccone S, Riva S, Falaschi A. 1992. The gene for a novel human lamin maps at a highly transcribed locus of chromosome 19 which replicates at the onset of S-phase. Mol. Cell. Biol. 12:3499–3506.
  • Lammerding J, Fong LG, Ji JY, Reue K, Stewart CL, Young SG, Lee RT. 2006. Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281:25768–25780. http://dx.doi.org/10.1074/jbc.M513511200.
  • Ji JY, Lee RT, Vergnes L, Fong LG, Stewart CL, Reue K, Young SG, Zhang Q, Shanahan CM, Lammerding J. 2007. Cell nuclei spin in the absence of lamin B1. J. Biol. Chem. 282:20015–20026. http://dx.doi.org/10.1074/jbc.M611094200.
  • Corrigan DP, Kuszczak D, Rusinol AE, Thewke DP, Hrycyna CA, Michaelis S, Sinensky MS. 2005. Prelamin A endoproteolytic processing in vitro by recombinant ZMPSTE24. Biochem. J. 387:129–138. http://dx.doi.org/10.1042/BJ20041359.
  • Bergo MO, Gavino B, Ross J, Schmidt WK, Hong C, Kendall LV, Mohr A, Meta M, Genant H, Jiang Y, Wisner ER, van Bruggen N, Carano RAD, Michaelis S, Griffey SM, Young SG. 2002. Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc. Natl. Acad. Sci. U. S. A. 99:13049–13054. http://dx.doi.org/10.1073/pnas.192460799.
  • Pendás AM, Zhou Z, Cadiñanos J, Freije JMP, Wang J, Hultenby K, Astudillo A, Wernerson A, Rodríguez F, Tryggvason K, Lopéz-Otín C. 2002. Defective prelamin A processing and muscular and adipocyte alterations in Zmpste24 metalloproteinase-deficient mice. Nat. Genet. 31:94–99. http://dx.doi.org/10.1038/ng871.
  • Sinensky M, Fantle K, Trujillo M, McLain T, Kupfer A, Dalton M. 1994. The processing pathway of prelamin A. J. Cell Sci. 107:61–67.
  • Barrowman J, Hamblet C, George CM, Michaelis S. 2008. Analysis of prelamin A biogenesis reveals the nucleus to be a CaaX processing compartment. Mol. Biol. Cell 19:5398–5408. http://dx.doi.org/10.1091/mbc.E08-07-0704.
  • Coffinier C, Jung HJ, Li Z, Nobumori C, Yun UJ, Farber EA, Davies BS, Weinstein MM, Yang SH, Lammerding J, Farahani JN, Bentolila LA, Fong LG, Young SG. 2010. Direct synthesis of lamin A, bypassing prelamin a processing, causes misshapen nuclei in fibroblasts but no detectable pathology in mice. J. Biol. Chem. 285:20818–20826. http://dx.doi.org/10.1074/jbc.M110.128835.
  • Davies BS, Barnes RHII, Tu Y, Ren S, Andres DA, Spielmann HP, Lammerding J, Wang Y, Young SG, Fong LG. 2010. An accumulation of non-farnesylated prelamin A causes cardiomyopathy but not progeria. Hum. Mol. Genet. 19:2682–2694. http://dx.doi.org/10.1093/hmg/ddq158.
  • Stewart C, Burke B. 1987. Teratocarcinoma stem cells and early mouse embryos contain only a single major lamin polypeptide closely resembling lamin B. Cell 51:383–392. http://dx.doi.org/10.1016/0092-8674(87)90634-9.
  • Eckersley-Maslin MA, Bergmann JH, Lazar Z, Spector DL. 2013. Lamin A/C is expressed in pluripotent mouse embryonic stem cells. Nucleus 4:53–60. http://dx.doi.org/10.4161/nucl.23384.
  • Röber RA, Weber K, Osborn M. 1989. Differential timing of nuclear lamin A/C expression in the various organs of the mouse embryo and the young animal: a developmental study. Development 105:365–378.
  • Sullivan T, Escalante-Alcalde D, Bhatt H, Anver M, Bhat N, Nagashima K, Stewart CL, Burke B. 1999. Loss of A-type lamin expression compromises nuclear envelope integrity leading to muscular dystrophy. J. Cell Biol. 147:913–919. http://dx.doi.org/10.1083/jcb.147.5.913.
  • Jahn D, Schramm S, Schnolzer M, Heilmann CJ, de Koster CG, Schutz W, Benavente R, Alsheimer M. 2012. A truncated lamin A in the Lmna -/- mouse line: implications for the understanding of laminopathies. Nucleus 3:463–474. http://dx.doi.org/10.4161/nucl.21676.
  • Solovei I, Wang AS, Thanisch K, Schmidt CS, Krebs S, Zwerger M, Cohen TV, Devys D, Foisner R, Peichl L, Herrmann H, Blum H, Engelkamp D, Stewart CL, Leonhardt H, Joffe B. 2013. LBR and lamin A/C sequentially tether peripheral heterochromatin and inversely regulate differentiation. Cell 152:584–598. http://dx.doi.org/10.1016/j.cell.2013.01.009.
  • Fong LG, Ng JK, Lammerding J, Vickers TA, Meta M, Cote N, Gavino B, Qiao X, Chang SY, Young SR, Yang SH, Stewart CL, Lee RT, Bennett CF, Bergo MO, Young SG. 2006. Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J. Clin. Invest. 116:743–752. http://dx.doi.org/10.1172/JCI27125.
  • Moir RD, Montag-Lowy M, Goldman RD. 1994. Dynamic properties of nuclear lamins: lamin B is associated with sites of DNA replication. J. Cell Biol. 125:1201–1212. http://dx.doi.org/10.1083/jcb.125.6.1201.
  • Shimi T, Pfleghaar K, Kojima S, Pack CG, Solovei I, Goldman AE, Adam SA, Shumaker DK, Kinjo M, Cremer T, Goldman RD. 2008. The A- and B-type nuclear lamin networks: microdomains involved in chromatin organization and transcription. Genes Dev. 22:3409–3421. http://dx.doi.org/10.1101/gad.1735208.
  • Tang CW, Maya-Mendoza A, Martin C, Zeng K, Chen S, Feret D, Wilson SA, Jackson DA. 2008. The integrity of a lamin-B1-dependent nucleoskeleton is a fundamental determinant of RNA synthesis in human cells. J. Cell Sci. 121:1014–1024. http://dx.doi.org/10.1242/jcs.020982.
  • Tsai MY, Wang S, Heidinger JM, Shumaker DK, Adam SA, Goldman RD, Zheng Y. 2006. A mitotic lamin B matrix induced by RanGTP required for spindle assembly. Science 311:1887–1893. http://dx.doi.org/10.1126/science.1122771.
  • Belmont AS, Zhai Y, Thilenius A. 1993. Lamin B distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography. J. Cell Biol. 123:1671–1685. http://dx.doi.org/10.1083/jcb.123.6.1671.
  • Harborth J, Elbashir SM, Bechert K, Tuschl T, Weber K. 2001. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J. Cell Sci. 114(Pt 24):4557–4565.
  • Yang SH, Chang SY, Yin L, Tu Y, Hu Y, Yoshinaga Y, de Jong PJ, Fong LG, Young SG. 2011. An absence of both lamin B1 and lamin B2 in keratinocytes has no effect on cell proliferation or the development of skin and hair. Hum. Mol. Genet. 20:3537–3544. http://dx.doi.org/10.1093/hmg/ddr266.
  • Yang SH, Jung HJ, Coffinier C, Fong LG, Young SG. 2011. Are B-type lamins essential in all mammalian cells? Nucleus 2:562–569. http://dx.doi.org/10.4161/nucl.2.6.18085.
  • Kim Y, Zheng X, Zheng Y. 2013. Proliferation and differentiation of mouse embryonic stem cells lacking all lamins. Cell Res. 23:1420–1423. http://dx.doi.org/10.1038/cr.2013.118.
  • Gupta A, Tsai LH, Wynshaw-Boris A. 2002. Life is a journey: a genetic look at neocortical development. Nat. Rev. Genet. 3:342–355. http://dx.doi.org/10.1038/nrg799.
  • Wynshaw-Boris A. 2007. Lissencephaly and LIS1: insights into the molecular mechanisms of neuronal migration and development. Clin. Genet. 72:296–304. http://dx.doi.org/10.1111/j.1399-0004.2007.00888.x.
  • Gambello MJ, Hirotsune S, Wynshaw-Boris A. 1999. Murine modelling of classical lissencephaly. Neurogenetics 2:77–86. http://dx.doi.org/10.1007/s100480050056.
  • Kim Y, Sharov AA, McDole K, Cheng M, Hao H, Fan CM, Gaiano N, Ko MS, Zheng Y. 2011. Mouse B-type lamins are required for proper organogenesis but not by embryonic stem cells. Science 334:1706–1710. http://dx.doi.org/10.1126/science.1211222.
  • Solecki DJ, Govek EE, Tomoda T, Hatten ME. 2006. Neuronal polarity in CNS development. Genes Dev. 20:2639–2647. http://dx.doi.org/10.1101/gad.1462506.
  • Wynshaw-Boris A, Gambello MJ. 2001. LIS1 and dynein motor function in neuronal migration and development. Genes Dev. 15:639–651. http://dx.doi.org/10.1101/gad.886801.
  • Vallee RB, Tsai JW. 2006. The cellular roles of the lissencephaly gene LIS1, and what they tell us about brain development. Genes Dev. 20:1384–1393. http://dx.doi.org/10.1101/gad.1417206.
  • Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D. 2006. Coupling of the nucleus and cytoplasm: role of the LINC complex. J. Cell Biol. 172:41–53. http://dx.doi.org/10.1083/jcb.200509124.
  • Zhang X, Lei K, Yuan X, Wu X, Zhuang Y, Xu T, Xu R, Han M. 2009. SUN1/2 and Syne/Nesprin-1/2 complexes connect centrosome to the nucleus during neurogenesis and neuronal migration in mice. Neuron 64:173–187. http://dx.doi.org/10.1016/j.neuron.2009.08.018.
  • Vergnes L, Peterfy M, Bergo MO, Young SG, Reue K. 2004. Lamin B1 is required for mouse development and nuclear integrity. Proc. Natl. Acad. Sci. U. S. A. 101:10428–10433. http://dx.doi.org/10.1073/pnas.0401424101.
  • Young SG, Jung HJ, Coffinier C, Fong LG. 2012. Understanding the roles of nuclear A- and B-type lamins in brain development. J. Biol. Chem. 287:16103–16110. http://dx.doi.org/10.1074/jbc.R112.354407.
  • Patterson K, Molofsky AB, Robinson C, Acosta S, Cater C, Fischer JA. 2004. The functions of Klarsicht and nuclear lamin in developmentally regulated nuclear migrations of photoreceptor cells in the Drosophila eye. Mol. Biol. Cell 15:600–610. http://dx.doi.org/10.1091/mbc.E03-06-0374.
  • Harada T, Swift J, Irianto J, Shin JW, Spinler KR, Athirasala A, Diegmiller R, Dingal PC, Ivanovska IL, Discher DE. 2014. Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204:669–682. http://dx.doi.org/10.1083/jcb.201308029.
  • Swift J, Harada T, Buxboim A, Shin JW, Tang HY, Speicher DW, Discher DE. 2013. Label-free mass spectrometry exploits dozens of detected peptides to quantify lamins in wildtype and knockdown cells. Nucleus 4:450–459. http://dx.doi.org/10.4161/nucl.27413.
  • Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE. 2013. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104. http://dx.doi.org/10.1126/science.1240104.
  • Rowat AC, Jaalouk DE, Zwerger M, Ung WL, Eydelnant IA, Olins DE, Olins AL, Herrmann H, Weitz DA, Lammerding J. 2013. Nuclear envelope composition determines the ability of neutrophil-type cells to passage through micron-scale constrictions. J. Biol. Chem. 288:8610–8618. http://dx.doi.org/10.1074/jbc.M112.441535.
  • Friedl P, Wolf K, Lammerding J. 2011. Nuclear mechanics during cell migration. Curr. Opin. Cell Biol. 23:55–64. http://dx.doi.org/10.1016/j.ceb.2010.10.015.
  • Dahl KN, Engler AJ, Pajerowski JD, Discher DE. 2005. Power-law rheology of isolated nuclei with deformation mapping of nuclear substructures. Biophys. J. 89:2855–2864. http://dx.doi.org/10.1529/biophysj.105.062554.
  • Robinson A, Partridge D, Malhas A, De Castro SC, Gustavsson P, Thompson DN, Vaux DJ, Copp AJ, Stanier P, Bassuk AG, Greene ND. 2013. Is LMNB1 a susceptibility gene for neural tube defects in humans? Birth Defects Res. A Clin. Mol. Teratol. 97:398–402. http://dx.doi.org/10.1002/bdra.23141.
  • De Castro SC, Malhas A, Leung KY, Gustavsson P, Vaux DJ, Copp AJ, Greene ND. 2012. Lamin b1 polymorphism influences morphology of the nuclear envelope, cell cycle progression, and risk of neural tube defects in mice. PLoS Genet. 8:e1003059. http://dx.doi.org/10.1371/journal.pgen.1003059.
  • Jung HJ, Nobumori C, Goulbourne CN, Tu Y, Lee JM, Tatar A, Wu D, Yoshinaga Y, de Jong PJ, Coffinier C, Fong LG, Young SG. 2013. Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proc. Natl. Acad. Sci. U. S. A. 110:E1923–E1932. http://dx.doi.org/10.1073/pnas.1303916110.
  • Lee JM, Tu Y, Tatar A, Wu D, Nobumori C, Jung HJ, Yoshinaga Y, Coffinier C, de Jong PJ, Fong LG, Young SG. 26 March 2014. Reciprocal knock-in mice to investigate the functional redundancy of lamin B1 and lamin B2. Mol. Biol. Cell http://dx.doi.org/10.1091/mbc.E14-01-0683.
  • Eldridge R, Anayiotos CP, Schlesinger S, Cowen D, Bever C, Patronas N, McFarland H. 1984. Hereditary adult-onset leukodystrophy simulating chronic progressive multiple sclerosis. N. Engl. J. Med. 311:948–953. http://dx.doi.org/10.1056/NEJM198410113111504.
  • Melberg A, Hallberg L, Kalimo H, Raininko R. 2006. MR characteristics and neuropathology in adult-onset autosomal dominant leukodystrophy with autonomic symptoms. Am. J. Neuroradiol. 27:904–911. http://www.ajnr.org/content/27/4/904.long.
  • Lin ST, Fu YH. 2009. miR-23 regulation of lamin B1 is crucial for oligodendrocyte development and myelination. Dis. Model. Mech. 2:178–188. http://dx.doi.org/10.1242/dmm.001065.
  • Coffeen CM, McKenna CE, Koeppen AH, Plaster NM, Maragakis N, Mihalopoulos J, Schwankhaus JD, Flanigan KM, Gregg RG, Ptacek LJ, Fu YH. 2000. Genetic localization of an autosomal dominant leukodystrophy mimicking chronic progressive multiple sclerosis to chromosome 5q31. Hum. Mol. Genet. 9:787–793. http://dx.doi.org/10.1093/hmg/9.5.787.
  • Marklund L, Melin M, Melberg A, Giedraitis V, Dahl N. 2006. Adult-onset autosomal dominant leukodystrophy with autonomic symptoms restricted to 1.5 Mbp on chromosome 5q23. Am. J. Med. Genet. B Neuropsychiatr. Genet. 141:608–614. http://dx.doi.org/10.1002/ajmg.b.30342.
  • Giorgio E, Rolyan H, Kropp L, Chakka AB, Yatsenko S, Gregorio ED, Lacerenza D, Vaula G, Talarico F, Mandich P, Toro C, Pierre EE, Labauge P, Capellari S, Cortelli P, Vairo FP, Miguel D, Stubbolo D, Marques LC, Gahl W, Boespflug-Tanguy O, Melberg A, Hassin-Baer S, Cohen OS, Pjontek R, Grau A, Klopstock T, Fogel B, Meijer I, Rouleau G, Bouchard JP, Ganapathiraju M, Vanderver A, Dahl N, Hobson G, Brusco A, Brussino A, Padiath QS. 2013. Analysis of LMNB1 duplications in autosomal dominant leukodystrophy provides insights into duplication mechanisms and allele-specific expression. Hum. Mutat. 34:1160–1171. http://dx.doi.org/10.1002/humu.22348.
  • Brussino A, Vaula G, Cagnoli C, Panza E, Seri M, Di Gregorio E, Scappaticci S, Camanini S, Daniele D, Bradac GB, Pinessi L, Cavalieri S, Grosso E, Migone N, Brusco A. 2010. A family with autosomal dominant leukodystrophy linked to 5q23.2–q23.3 without lamin B1 mutations. Eur. J. Neurol. 17:541–549. http://dx.doi.org/10.1111/j.1468-1331.2009.02844.x.
  • Ralle T, Grund C, Franke WW, Stick R. 2004. Intranuclear membrane structure formations by CaaX-containing nuclear proteins. J. Cell Sci. 117:6095–6104. http://dx.doi.org/10.1242/jcs.01528.
  • Favreau C, Dubosclard E, Ostlund C, Vigoroux C, Capeau J, Wehnert M, Higuet D, Worman H, Courvalin J-C, Buendia B. 2003. Expression of lamin A mutated in the carboxyl-terminal tail generates an aberrant nuclear phenotype similar to that observed in cells from patients with Dunnigan-type partial lipodystrophy and Emery-Dreifuss muscular dystrophy. Exp. Cell Res. 282:14–23. http://dx.doi.org/10.1006/excr.2002.5669.
  • Heng MY, Lin ST, Verret L, Huang Y, Kamiya S, Padiath QS, Tong Y, Palop JJ, Huang EJ, Ptacek LJ, Fu YH. 2013. Lamin B1 mediates cell-autonomous neuropathology in a leukodystrophy mouse model. J. Clin. Invest. 123:2719–2729. http://dx.doi.org/10.1172/JCI66737.
  • Lin ST, Huang Y, Zhang L, Heng MY, Ptacek LJ, Fu YH. 2013. MicroRNA-23a promotes myelination in the central nervous system. Proc. Natl. Acad. Sci. U. S. A. 110:17468–17473. http://dx.doi.org/10.1073/pnas.1317182110.
  • Lin ST, Heng MY, Ptacek LJ, Fu YH. 2014. Regulation of Myelination in the central nervous system by nuclear lamin B1 and non-coding RNAs. Transl. Neurodegener. 3:4. http://dx.doi.org/10.1186/2047-9158-3-4.
  • DeBusk FL. 1972. The Hutchinson-Gilford progeria syndrome. J. Pediatr. 80:697–724. http://dx.doi.org/10.1016/S0022-3476(72)80229-4.
  • Navarro CL, Cau P, Levy N. 2006. Molecular bases of progeroid syndromes. Hum. Mol. Genet. 15(Spec No 2):R151–R161. http://dx.doi.org/10.1093/hmg/ddl214.
  • Martin GM. 1985. Genetics and aging; the Werner syndrome as a segmental progeroid syndrome. Adv. Exp. Med. Biol. 190:161–170. http://dx.doi.org/10.1007/978-1-4684-7853-2_5.
  • Martin GM. 1982. Syndromes of accelerated aging. Natl. Cancer Inst. Monogr. 60:241–247.
  • De Sandre-Giovannoli A, Bernard R, Cau P, Navarro C, Amiel J, Boccaccio I, Lyonnet S, Stewart CL, Munnich A, Le Merrer M, Lévy N. 2003. Lamin A truncation in Hutchinson-Gilford progeria. Science 300:2055. http://dx.doi.org/10.1126/science.1084125.
  • Yang SH, Andres DA, Spielmann HP, Young SG, Fong LG. 2008. Progerin elicits disease phenotypes of progeria in mice whether or not it is farnesylated. J. Clin. Invest. 118:3291–3300. http://dx.doi.org/10.1172/JCI35876.
  • Yang SH, Chang SY, Andres DA, Spielmann HP, Young SG, Fong LG. 2010. Assessing the efficacy of protein farnesyltransferase inhibitors in mouse models of progeria. J. Lipid Res. 51:400–405. http://dx.doi.org/10.1194/jlr.M002808.
  • Fong LG, Vickers TA, Farber EA, Choi C, Yun UJ, Hu Y, Yang SH, Coffinier C, Lee R, Yin L, Davies BS, Andres DA, Spielmann HP, Bennett CF, Young SG. 2009. Activating the synthesis of progerin, the mutant prelamin A in Hutchinson-Gilford progeria syndrome, with antisense oligonucleotides. Hum. Mol. Genet. 18:2462–2471. http://dx.doi.org/10.1093/hmg/ddp184.
  • Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LG. 2006. A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J. Clin. Invest. 116:2115–2121. http://dx.doi.org/10.1172/JCI28968.
  • Nissan X, Blondel S, Navarro C, Maury Y, Denis C, Girard M, Martinat C, De Sandre-Giovannoli A, Levy N, Peschanski M. 2012. Unique preservation of neural cells in Hutchinson-Gilford progeria syndrome is due to the expression of the neural-specific miR-9 microRNA. Cell Rep. 2:1–9. http://dx.doi.org/10.1016/j.celrep.2012.05.015.
  • Bartel DP. 2009. MicroRNAs: target recognition and regulatory functions. Cell 136:215–233. http://dx.doi.org/10.1016/j.cell.2009.01.002.
  • Bushati N, Cohen SM. 2007. microRNA functions. Annu. Rev. Cell Dev. Biol. 23:175–205. http://dx.doi.org/10.1146/annurev.cellbio.23.090506.123406.
  • Gao FB. 2010. Context-dependent functions of specific microRNAs in neuronal development. Neural Dev. 5:25. http://dx.doi.org/10.1186/1749-8104-5-25.
  • Coolen M, Bally-Cuif L. 2009. MicroRNAs in brain development and physiology. Curr. Opin. Neurobiol. 19:461–470. http://dx.doi.org/10.1016/j.conb.2009.09.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.