106
Views
6
CrossRef citations to date
0
Altmetric
Research Article

The Chromatin-Associated Phf12 Protein Maintains Nucleolar Integrity and Prevents Premature Cellular Senescence

, , , , , & show all
Article: e00522-16 | Received 23 Sep 2016, Accepted 04 Dec 2016, Published online: 17 Mar 2023

REFERENCES

  • Musselman CA, Kutateladze TG. 2011. Handpicking epigenetic marks with PHD fingers. Nucleic Acids Res 39:9061–9071. https://doi.org/10.1093/nar/gkr613.
  • Yochum GS, Ayer DE. 2001. Pf1, a novel PHD zinc finger protein that links the TLE corepressor to the mSin3A-histone deacetylase complex. Mol Cell Biol 21:4110–4118. https://doi.org/10.1128/MCB.21.13.4110-4118.2001.
  • Hayakawa T, Ohtani Y, Hayakawa N, Shinmyozu K, Saito M, Ishikawa F, Nakayama J. 2007. RBP2 is an MRG15 complex component and down-regulates intragenic histone H3 lysine 4 methylation. Genes Cells 12:811–826.
  • Yochum GS, Ayer DE. 2002. Role for the mortality factors MORF4, MRGX, and MRG15 in transcriptional repression via associations with Pf1, mSin3A, and Transducin-Like Enhancer of Split. Mol Cell Biol 22:7868–7876. https://doi.org/10.1128/MCB.22.22.7868-7876.2002.
  • Xie T, Graveline R, Kumar GS, Zhang Y, Krishnan A, David G, Radhakrishnan I. 2012. Structural basis for molecular interactions involving MRG domains: implications in chromatin biology. Structure 20:151–160. https://doi.org/10.1016/j.str.2011.10.019.
  • Jelinic P, Pellegrino J, David G. 2011. A novel mammalian complex containing Sin3B mitigates histone acetylation and RNA polymerase II progression within transcribed loci. Mol Cell Biol 31:54–62. https://doi.org/10.1128/MCB.00840-10.
  • Kaadige MR, Ayer DE. 2006. The polybasic region that follows the plant homeodomain zinc finger 1 of Pf1 is necessary and sufficient for specific phosphoinositide binding. J Biol Chem 281:28831–28836. https://doi.org/10.1074/jbc.M605624200.
  • Strobl-Mazzulla PH, Bronner ME. 2012. A PHD12-Snail2 repressive complex epigenetically mediates neural crest epithelial-to-mesenchymal transition. J Cell Biol 198:999–1010. https://doi.org/10.1083/jcb.201203098.
  • Bansal N, Petrie K, Christova R, Chung CY, Leibovitch BA, Howell L, Gil V, Sbirkov Y, Lee E, Wexler J, Ariztia EV, Sharma R, Zhu J, Bernstein E, Zhou MM, Zelent A, Farias E, Waxman S. 2015. Targeting the SIN3A-PF1 interaction inhibits epithelial to mesenchymal transition and maintenance of a stem cell phenotype in triple negative breast cancer. Oncotarget 6:34087–34105. https://doi.org/10.18632/oncotarget.6048.
  • David G, Grandinetti KB, Finnerty PM, Simpson N, Chu GC, Depinho RA. 2008. Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation. Proc Natl Acad Sci U S A 105:4168–4172. https://doi.org/10.1073/pnas.0710285105.
  • Grandinetti KB, David G. 2008. Sin3B: an essential regulator of chromatin modifications at E2F target promoters during cell cycle withdrawal. Cell Cycle 7:1550–1554. https://doi.org/10.4161/cc.7.11.6052.
  • Grandinetti KB, Jelinic P, DiMauro T, Pellegrino J, Fernandez Rodriguez R, Finnerty PM, Ruoff R, Bardeesy N, Logan SK, David G. 2009. Sin3B expression is required for cellular senescence and is up-regulated upon oncogenic stress. Cancer Res 69:6430–6437. https://doi.org/10.1158/0008-5472.CAN-09-0537.
  • Rielland M, Cantor DJ, Graveline R, Hajdu C, Mara L, Diaz BDD, Miller G, David G. 2014. Senescence-associated SIN3B promotes inflammation and pancreatic cancer progression. J Clin Invest 124:2125–2135. https://doi.org/10.1172/JCI72619.
  • Lagger G, O'Carroll D, Rembold M, Khier H, Tischler J, Weitzer G, Schuettengruber B, Hauser C, Brunmeir R, Jenuwein T, Seiser C. 2002. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21:2672–2681. https://doi.org/10.1093/emboj/21.11.2672.
  • Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN. 2007. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21:1790–1802. https://doi.org/10.1101/gad.1563807.
  • Wilting RH, Yanover E, Heideman MR, Jacobs H, Horner J, van der Torre J, DePinho RA, Dannenberg JH. 2010. Overlapping functions of Hdac1 and Hdac2 in cell cycle regulation and haematopoiesis. EMBO J 29:2586–2597. https://doi.org/10.1038/emboj.2010.136.
  • Tominaga K, Kirtane B, Jackson JG, Ikeno Y, Ikeda T, Hawks C, Smith JR, Matzuk MM, Pereira-Smith OM. 2005. MRG15 regulates embryonic development and cell proliferation. Mol Cell Biol 25:2924–2937. https://doi.org/10.1128/MCB.25.8.2924-2937.2005.
  • Di Micco R, Sulli G, Dobreva M, Liontos M, Botrugno OA, Gargiulo G, dal Zuffo R, Matti V, d'Ario G, Montani E, Mercurio C, Hahn WC, Gorgoulis V, Minucci S, d'Adda di Fagagna F. 2011. Interplay between oncogene-induced DNA damage response and heterochromatin in senescence and cancer. Nat Cell Biol 13:292–302. https://doi.org/10.1038/ncb2170.
  • Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI. 2007. The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585.
  • Holmberg Olausson K, Nister M, Lindstrom MS. 2012. p53-dependent and -independent nucleolar stress responses. Cells 1:774–798. https://doi.org/10.3390/cells1040774.
  • Kar B, Liu B, Zhou Z, Lam YW. 2011. Quantitative nucleolar proteomics reveals nuclear re-organization during stress-induced senescence in mouse fibroblast. BMC Cell Biol 12:33. https://doi.org/10.1186/1471-2121-12-33.
  • Sobol M, Yildirim S, Philimonenko VV, Marasek P, Castano E, Hozak P. 2013. UBF complexes with phosphatidylinositol 4,5-bisphosphate in nucleolar organizer regions regardless of ongoing RNA polymerase I activity. Nucleus 4:478–486. https://doi.org/10.4161/nucl.27154.
  • Newton K, Petfalski E, Tollervey D, Caceres JF. 2003. Fibrillarin is essential for early development and required for accumulation of an intron-encoded small nucleolar RNA in the mouse. Mol Cell Biol 23:8519–8527. https://doi.org/10.1128/MCB.23.23.8519-8527.2003.
  • Adams PD. 2007. Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 397:84–93. https://doi.org/10.1016/j.gene.2007.04.020.
  • Tollervey D, Lehtonen H, Jansen R, Kern H, Hurt EC. 1993. Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell 72:443–457. https://doi.org/10.1016/0092-8674(93)90120-F.
  • Finkbeiner E, Haindl M, Raman N, Muller S. 2011. SUMO routes ribosome maturation. Nucleus 2:527–532. https://doi.org/10.4161/nucl.2.6.17604.
  • Finkbeiner E, Haindl M, Muller S. 2011. The SUMO system controls nucleolar partitioning of a novel mammalian ribosome biogenesis complex. EMBO J 30:1067–1078. https://doi.org/10.1038/emboj.2011.33.
  • Grisendi S, Mecucci C, Falini B, Pandolfi PP. 2006. Nucleophosmin and cancer. Nat Rev Cancer 6:493–505. https://doi.org/10.1038/nrc1885.
  • Haindl M, Harasim T, Eick D, Muller S. 2008. The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep 9:273–279. https://doi.org/10.1038/embor.2008.3.
  • Raman N, Nayak A, Muller S. 2014. mTOR signaling regulates nucleolar targeting of the SUMO-specific isopeptidase SENP3. Mol Cell Biol 34:4474–4484. https://doi.org/10.1128/MCB.00801-14.
  • Kumar GS, Chang W, Xie T, Patel A, Zhang Y, Wang GG, David G, Radhakrishnan I. 2012. Sequence requirements for combinatorial recognition of histone H3 by the MRG15 and Pf1 subunits of the Rpd3S/Sin3S corepressor complex. J Mol Biol 422:519–531. https://doi.org/10.1016/j.jmb.2012.06.013.
  • Benevolenskaya EV, Murray HL, Branton P, Young RA, Kaelin WG, Jr. 2005. Binding of pRB to the PHD protein RBP2 promotes cellular differentiation. Mol Cell 18:623–635. https://doi.org/10.1016/j.molcel.2005.05.012.
  • Florens L, Carozza MJ, Swanson SK, Fournier M, Coleman MK, Workman JL, Washburn MP. 2006. Analyzing chromatin remodeling complexes using shotgun proteomics and normalized spectral abundance factors. Methods 40:303–311. https://doi.org/10.1016/j.ymeth.2006.07.028.
  • Mitchell L, Lambert JP, Gerdes M, Al-Madhoun AS, Skerjanc IS, Figeys D, Baetz K. 2008. Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity. Mol Cell Biol 28:2244–2256. https://doi.org/10.1128/MCB.01653-07.
  • Collado M. 2010. Exploring a ‘pro-senescence’ approach for prostate cancer therapy by targeting PTEN. Future Oncol 6:687–689. https://doi.org/10.2217/fon.10.39.
  • Collado M, Serrano M. 2010. Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10:51–57. https://doi.org/10.1038/nrc2772.
  • Sharpless NE, Sherr CJ. 2015. Forging a signature of in vivo senescence. Nat Rev Cancer 15:397–408. https://doi.org/10.1038/nrc3960.
  • Dimauro T, David G. 2009. Chromatin modifications: the driving force of senescence and aging? Aging (Albany NY) 1:182–190.
  • Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. 2010. The essence of senescence. Genes Dev 24:2463–2479. https://doi.org/10.1101/gad.1971610.
  • Sinclair DA, Mills K, Guarente L. 1997. Accelerated aging and nucleolar fragmentation in yeast sgs1 mutants. Science 277:1313–1316. https://doi.org/10.1126/science.277.5330.1313.
  • van Deursen JM. 2014. The role of senescent cells in ageing. Nature 509:439–446. https://doi.org/10.1038/nature13193.
  • Nishimura K, Kumazawa T, Kuroda T, Katagiri N, Tsuchiya M, Goto N, Furumai R, Murayama A, Yanagisawa J, Kimura K. 2015. Perturbation of ribosome biogenesis drives cells into senescence through 5S RNP-mediated p53 activation. Cell Rep 10:1310–1323. https://doi.org/10.1016/j.celrep.2015.01.055.
  • Tsang CK, Bertram PG, Ai W, Drenan R, Zheng XF. 2003. Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR. EMBO J 22:6045–6056. https://doi.org/10.1093/emboj/cdg578.
  • Zhou Y, Santoro R, Grummt I. 2002. The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J 21:4632–4640. https://doi.org/10.1093/emboj/cdf460.
  • Wong JC, Hasan MR, Rahman M, Yu AC, Chan SK, Schaeffer DF, Kennecke HF, Lim HJ, Owen D, Tai IT. 2013. Nucleophosmin 1, upregulated in adenomas and cancers of the colon, inhibits p53-mediated cellular senescence. Int J Cancer 133:1567–1577. https://doi.org/10.1002/ijc.28180.
  • Ning Z, Zhang Y, Chen H, Wu J, Song T, Wu Q, Liu F. 2014. PELP1 suppression inhibits colorectal cancer through c-Src downregulation. Oxid Med Cell Longev 2014:193523. https://doi.org/10.1155/2014/193523.
  • Castle CD, Cassimere EK, Denicourt C. 2012. LAS1L interacts with the mammalian Rix1 complex to regulate ribosome biogenesis. Mol Biol Cell 23:716–728. https://doi.org/10.1091/mbc.E11-06-0530.
  • Calo E, Flynn RA, Martin L, Spitale RC, Chang HY, Wysocka J. 2015. RNA helicase DDX21 coordinates transcription and ribosomal RNA processing. Nature 518:249–253. https://doi.org/10.1038/nature13923.
  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW. 1997. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602. https://doi.org/10.1016/S0092-8674(00)81902-9.
  • Reich M, Liefeld T, Gould J, Lerner J, Tamayo P, Mesirov JP. 2006. GenePattern 2.0. Nat Genet 38:500–501. https://doi.org/10.1038/ng0506-500.
  • Huang DW, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57. https://doi.org/10.1038/nprot.2008.211.
  • Huang DW, Sherman BT, Zheng X, Yang J, Imamichi T, Stephens R, Lempicki RA. 2009. Extracting biological meaning from large gene lists with DAVID. Curr Protoc Bioinformatics 27:13.11.1–13.11.13. https://doi.org/10.1002/0471250953.bi1311s27.
  • Cotto-Rios XM, Bekes M, Chapman J, Ueberheide B, Huang TT. 2012. Deubiquitinases as a signaling target of oxidative stress. Cell Rep 2:1475–1484. https://doi.org/10.1016/j.celrep.2012.11.011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.