17
Views
13
CrossRef citations to date
0
Altmetric
Article

A Network of Transcription Factors Operates during Early Tooth Morphogenesis

, , , &
Pages 3099-3112 | Received 30 Apr 2013, Accepted 03 May 2013, Published online: 20 Mar 2023

REFERENCES

  • Thesleff I, Vaahtokari A, Partanen AM. 1995. Regulation of organogenesis. Common molecular mechanisms regulating the development of teeth and other organs. Int. J. Dev. Biol. 39:35–50.
  • Bei M, Peters H, Maas RL. 2002. The role of PAX and MSX genes in craniofacial development, p 101–112. In Lin KY, Ogle RC, Jane JA (ed), Craniofacial surgery: science & surgical technique. W. B. Saunders Company, Philadelphia, PA.
  • Bei M. 2009. Molecular genetics of ameloblast cell lineage. J. Exp. Zool. B Mol. Dev. Evol. 312B:437–444.
  • Bei M. 2009. Molecular genetics of tooth development. Curr. Opin. Genet. Dev. 19:504–510.
  • Hayashi S, Scott MP. 1990. What determines the specificity of action of Drosophila homeodomain proteins? Cell 63:883–894.
  • Maas R, Bei M. 1997. The genetic control of early tooth development. Crit. Rev. Oral Biol. Med. 8:4–39.
  • Peters H, Balling R. 1999. Teeth: where and how to make them. Trends Genet. 15:59–65.
  • Thesleff I, Mikkola M. 2002. The role of growth factors in tooth development. Int. Rev. Cytol. 217:93–135.
  • Thesleff I, Sharpe P. 1997. Signaling networks regulating dental development. Mech. Dev. 67:111–123.
  • Tucker A, Sharpe P. 2004. The cutting-edge of mammalian development: how the embryo makes teeth. Nat. Rev. Genet. 5:499–508.
  • Veltmaat JM, Mailleux AA, Thiery JP, Bellusci S. 2003. Mouse embryonic mammogenesis as a model for the molecular regulation of pattern formation. Differentiation 71:1–17.
  • Satokata I, Maas R. 1994. Msx-1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat. Genet. 6:348–356.
  • Åberg T, Wang XP, Kim JH, Yamashiro T, Bei M, Rice R, Ryoo HM, Thesleff I. 2004. Runx2 mediates FGF signaling from epithelium to mesenchyme during tooth morphogenesis. Dev. Biol. 270:76–93.
  • Bei M, Maas R. 1998. FGFs and BMP4 induce Msx1-dependent and Msx1-independent signaling pathways in early tooth development. Development 125:4325–4333.
  • Bei M, Kratochwil K, Maas R. 2000. BMP4 rescues a non-cell-autonomous function of Msx1 in tooth development. Development 127:4711–4718.
  • Bei M, Chen Y, Woo I, Satokata I, Mass RL. 1996. Control of murine tooth development by Msx1 gene, p 431–440. In Davidovitch Z (ed), The biological mechanisms of tooth eruption, resorption and replacement by implants. Harvard Society for the Advancement of Orthodontics, Boston, MA.
  • Chen Y, Bei M, Woo I, Satokata I, Maas R. 1996. Msx1 controls inductive signaling in mammalian tooth morphogenesis. Development 122:3035–3044.
  • Han J, Ito Y, Yeo JY, Sucov HM, Maas R, Chai Y. 2003. Cranial neural crest-derived mesenchymal proliferation is regulated by Msx1-mediated p19 (INK4d) expression during odontogenesis. Dev. Biol. 261:183–196.
  • Jumlongras D, Bei M, Stimson JM, Wang WF, DePalma SR, Seidman CE, Felbor U, Maas R, Seidman JG, Olsen BR. 2001. A nonsense mutation in MSX1 causes Witkop syndrome. Am. J. Hum. Genet. 69:67–74.
  • van den Boogaard MH, Dorland M, Beemer FA, Ploos van Amstel HK. 2000. MSX1 mutation is associated with orofacial clefting and tooth agenesis in humans. Nat. Genet. 24:342–343.
  • Vastardis H, Karimboux N, Guthua SW, Seidman JG, Seidman CE. 1996. A human MSX1 homeodomain missense mutation causes selective tooth agenesis. Nat. Genet. 13:417–421.
  • Bendall AJ, Ding J, Hu G, Shen MM, Abate-Shen C. 1999. Msx1 antagonizes the myogenic activity of Pax3 in migrating limb muscle precursors. Development 126:4965–4976.
  • Shetty S, Takahashi T, Matsui H, Ayengar R, Raghow R. 1999. Transcriptional autorepression of Msx1 gene is mediated by interactions of Msx1 protein with a multi-protein transcriptional complex containing TATA binding protein, Sp1 and cAMP-response-element-binding protein-binding protein (CBP/p300). Biochem. J. 339:751–758.
  • Zhang H, Catron KM, Abate-Shen C. 1996. A role for the Msx-1 homeodomain in transcriptional regulation: residues in the N-terminal arm mediate TATA binding protein interaction and transcriptional repression. Proc. Natl. Acad. Sci. U. S. A. 93:1764–1769.
  • Lee H, Habas R, Abate-Shen C. 2004. Msx1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science 304:1675–1678.
  • Hu G, Lee H, Price SM, Shen MM, Abate-Shen C. 2001. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development 128:2373–2384.
  • Mann RS, Affolter M. 1998. Hox proteins meet more partners. Curr. Opin. Genet. Dev. 8:423–429.
  • Qiu M, Bulfone A, Martinez S, Meneses S, Shimamura K, Pedersen RA, Rubenstein JLR. 1995. Null mutation of Dlx-2 results in abnormal morphogenesis of proximal first and second branch arch derivatives and abnormal differentiation in the forebrain. Genes Dev. 9:2523–2538.
  • Qiu M, Bulfone A, Ghattas I, Meneses JJ, Sharpe PT, Presley R, Pedersen RA, Rubenstein JLR. 1997. Role of the Dlx-1 and -2 alter morphogenesis of proximal skeletal and soft tissue structures derived from the first and second arches. Dev. Biol. 185:165–184.
  • Thomas BL, Tucker AS, Qui M, Ferguson CA, Hardcastle Z, Rubenstein JLR, Sharpe PT. 1997. Role of Dlx1 and Dlx2 genes in patterning of murine dentition. Dentition 124:4811–4818.
  • Mucchielli ML, Mitsiadis TA, Raffo S, Brunet JF, Proust JP, Goridis C. 1997. Mouse Otlx2/RIEG expression in the odontogenic epithelium precedes tooth initiation and requires mesenchyme-derived signals for its maintenance. Dev. Biol. 189:275–284.
  • Semina EV, Reiter R, Leysens NJ, Alward WL, Small KW, Datson NA, Siegel-Bartelt J, Bierke-Nelson D, Bitoun P, Zabel BU, Carey JC, Murray JC. 1996. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat. Genet. 14:392–399.
  • van Genderen C, Okamura RM, Fariñas I, Quo RG, Parslow TG, Bruhn L, Grosschedl R. 1994. Development of several organs that require inductive epithelial-mesenchymal interactions is impaired in LEF-1-deficient mice. Genes Dev. 8:2691–2703.
  • Bouwman P, Gollner H, Elsasser HP, Eckhoff G, Karis A, Grosveld F, Philipsen S, Suske G. 2000. Transcription factor Sp3 is essential for post-natal survival and late tooth development. EMBO J. 19:655–661.
  • Peters H, Neubüser A, Kratochwil K, Balling R. 1998. Pax9 deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes Dev. 12:2735–2747.
  • Gupta V, Bei M. 2006. Modification of Msx1 by SUMO-1. Biochem. Biophys. Res. Commun. 345:74–77.
  • Feuerstein R, Wang X, Song D, Cooke NE, Liebhaber SA. 1994. The LIM/double zinc-finger motif functions as a protein dimerization domain. Proc. Natl. Acad. Sci. U. S. A. 91:10655–10659.
  • Schmeichel KL, Beckerle MC. 1994. The LIM domain is a modular protein-binding interface. Cell 79:211–219.
  • Taira M, Evrard JL, Steinmetz A, Dawid IB. 1995. Classification of LIM proteins. Trends Genet. 11:431–432.
  • Nieto MA. 2002. The Snail superfamily of zinc finger transcription factors. Nat. Rev. Mol. Cell. Biol. 3:155–166.
  • Ogawa T, Kapadia H, Wang B, D'Souza RN. 2005. Studies on Pax9-Msx1 protein interactions. Arch. Oral Biol. 50:141–145.
  • Zhang H, Hug G, Wang H, Sciavolino P, Iler N, Shen MM, Abate-Shen C. 1997. Heterodimerization of Msx and Dlx homeoproteins results in functional antagonism. Mol. Cell. Biol. 17:2920–2932.
  • Woloshin P, Song K, Degnin C, Killary AM, Goldhamer DJ, Sassoon D, Thayer MJ. 1995. MSX1 inhibits myoD expression in fibroblast × 10T1/2 cell hybrids. Cell 82:611–620.
  • Givens ML, Rave-Harel N, Goonewardena VD, Kurotani R, Berdy SE, Swan CH, Rubenstein JL, Robert B, Mellon PL. 2005. Developmental regulation of gonadotropin-releasing hormone gene expression by the MSX and DLX homeodomain protein families. J. Biol. Chem. 280:19156–19165.
  • Peinado H, Ballestar E, Esteller M, Cano A. 2004. Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol. Cell. Biol. 24:306–319.
  • Diamond E, Amen M, Hu Q, Espinoza HM, Amendt BA. 2006. Functional interactions between Dlx2 and lymphoid enhancer factor regulate Msx2. Nucleic Acids Res. 34:5951–5965.
  • Vadlamudi U, Espinoza HM, Ganga M, Martin DM, Liu X, Engelhardt JF, Amendt BA. 2005. PITX2, β-catenin and LEF-1 interact to synergistically regulate the LEF-1 promoter. J. Cell Sci. 118:1129–1137.
  • Arber S, Caroni P. 1996. Specificity of single LIM motifs in targeting and LIM/LIM interactions in situ. Genes Dev. 10:289–300.
  • Bach I, Carriere C, Ostendorff HP, Andersen B, Rosenfeld MG. 1997. A family of LIM domain-associated cofactors confer transcriptional synergism between LIM and Otx homeodomain proteins. Genes Dev. 11:1370–1380.
  • Breen JJ, Agulnick AD, Westphal H, Dawid IB. 1998. Interactions between LIM domains and the LIM domain-binding protein Ldb1. J. Biol. Chem. 273:4712–4717.
  • Dawid IB, Breen JJ, Toyama R. 1998. LIM domains: multiple roles as adapters and functional modifiers in protein interactions. Trends Genet. 14:156–162.
  • Denaxa M, Sharpe PT, Pachnis V. 2009. The LIM homeodomain transcription factors Lhx6 and Lhx7 are key regulators of mammalian dentition. Dev. Biol. 333:324–336.
  • Grigoriou M, Tucker AS, Sharpe PT, Pachnis V. 1998. Expression of Lhx-6 and Lhx-7, a novel subfamily of Lim homeodomain genes, suggests a role in mammalian head development. Development 125:2063–2074.
  • Lu CH, Rincón-Limas DE, Botas J. 2000. Conserved overlapping and reciprocal expression of msh/Msx1 and apterous/Lhx2 in Drosophila and mice. Mech. Dev. 99:177–181.
  • Dennig J, Beato M, Suske G. 1996. An inhibitor domain in Sp3 regulates its glutamine-rich activation domains. EMBO J. 15:5659–5667.
  • Ihn H, Trojanowska M. 1997. Sp3 is a transcriptional activator of the human 2(I) collagen gene. Nucleic Acids Res. 25:3712–3717.
  • Kadonaga JT, Carner KR, Masiarz FR, Tjian R. 1987. Isolation of cDNA encoding transcription factor Sp1 and functional analysis of the DNA binding domain. Cell 51:1079–1090.
  • Kennett SB, Udvadia AJ, Horowitz JM. 1997. Sp3 encodes multiple proteins that differ in their capacity to stimulate or repress transcription. Nucleic Acids Res. 25:3110–3117.
  • Suske G. 1999. The Sp-family of transcription factors. Gene 238:291–300.
  • Bei M, Stowell S, Maas R. 2004. Msx2 controls ameloblast terminal differentiation. Dev. Dyn. 231:758–765.
  • Hagen G, Muller S, Beato M, Suske G. 1994. Sp1-mediated transcriptional activation is repressed by Sp3. EMBO J. 13:3843–3851.
  • Kumar AP, Butler AP. 1997. Transcription factor Sp3 antagonizes activation of the ornithine decarboxylase promoter by Sp1. Nucleic Acids Res. 25:2012–2019.
  • Zhao L, Chang LS. 1997. The human POLD1 gene. Identification of an upstream activator sequence, activation by Sp1 and Sp3 and cell cycle regulation. J. Biol. Chem. 272:4869–4882.
  • Carver EA, Jiang R, Lan Y, Oram KF, Gridley T. 2001. The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Mol. Cell. Biol. 21:8184–8188.
  • Manzanares M, Locascio A, Nieto MA. 2001. The increasing complexity of the Snail superfamily in metazoan evolution. Trends Genet. 17:178–181.
  • Nieto MA, Bennet MF, Sargent MG, Wilkinson DG. 1992. Cloning and developmental expression of Sna, a murine homologue of the Drosophila snail gene. Development 116:227–237.
  • Smith DE, Del Amo FF, Gridley T. 1992. Isolation of Sna, a mouse gene homologous to the Drosophila genes snail and escargot: its expression pattern suggests multiple roles during postimplantation development. Development 116:1033–1039.
  • Nibu Y, Zhang H, Bajor E, Barolo S, Small S, Levine M. 1998. dCtBP mediates transcriptional repression by Knirps, Kruppel and Snail in the Drosophila embryo. EMBO J. 17:7009–7020.
  • Aybar MJ, Nieto MA, Mayor R. 2003. Snail precedes slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development 130:483–494.
  • Vega S, Morales AV, Ocaña OH, Valdés F, Fabregat I, Nieto MA. 2004. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 18:1131–1143.
  • Kratochwil K, Dull M, Farinas I, Galceran J, Grosschedl R. 1996. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Genes Dev. 10:1382–1394.
  • Virolle T, Krones-Herzig A, Baron V, De Gregorio G, Adamson ED, Mercola D. 2003. Egr1 promotes growth and survival of prostate cancer cells. Identification of novel Egr1 target genes. J. Biol. Chem. 278:11802–11810.
  • Gilles L, Guieze R, Bluteau D, Cordette-Lagarde V, Lacout C, Favier R, Larbret F, Debili N, Vainchenker W, Raslova H. 2008. P19INK4D links endomitotic arrest and megakaryocyte maturation and is regulated by AML-1. Blood 111:4081–4091.
  • Katayama K, Nakamura A, Sugimoto Y, Tsuruo T, Fujita N. 2008. FOXO transcription factor-dependent p15(INK4b) and p19(INK4d) expression. Oncogene 27:1677–1686.
  • O'Farrell AM, Parry DA, Zindy F, Roussel MF, Lees E, Moore KW, Mui AL. 2000. Stat3-dependent induction of p19INK4D by IL-10 contributes to inhibition of macrophage proliferation. J. Immunol. 164:4607–4615.
  • Yokota T, Matsuzaki Y, Miyazawa K, Zindy F, Roussel MF, Sakai T. 2004. Histone deacetylase inhibitors activate INK4d gene through Sp1 site in its promoter. Oncogene 23:5340–5349.
  • Carcagno AL, Marazita MC, Ogara MF, Ceruti JM, Sonzogni SV, Scassa ME, Giono LE, Canepa ET. 2011. E2F1-mediated upregulation of p19INK4d determines its periodic expression during cell cycle and regulates cellular proliferation. PLoS One 6:e21938. doi:10.1371/journal.pone.0021938.
  • Ceruti JM, Scassa ME, Flo JM, Varone CL, Canepa ET. 2005. Induction of p19INK4d in response to ultraviolet light improves DNA repair and confers resistance to apoptosis in neuroblastoma cells. Oncogene 24:4065–4080.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.