51
Views
14
CrossRef citations to date
0
Altmetric
Research Article

T Cell Factor 7 (TCF7)/TCF1 Feedback Controls Osteocalcin Signaling in Brown Adipocytes Independent of the Wnt/β-Catenin Pathway

, , , , , & show all
Article: e00562-17 | Received 25 Oct 2017, Accepted 17 Jan 2018, Published online: 03 Mar 2023

REFERENCES

  • Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, Smith E, Bonadio J, Goldstein S, Gundberg C, Bradley A, Karsenty G. 1996. Increased bone formation in steoclacin-deficient mice. Nature 382:448–452. https://doi.org/10.1038/382448a0.
  • Wei J, Karsenty G. 2015. An overview of the metabolic functions of osteocalcin. Rev Endocr Metab Disord 16:93–98. https://doi.org/10.1007/s11154-014-9307-7.
  • Li J, Zhang H, Yang C, Li Y, Dai Z. 2016. An overview of osteocalcin progress. J Bone Miner Metab 34:367–379. https://doi.org/10.1007/s00774-015-0734-7.
  • Karsenty G, Olson EN. 2016. Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell 164:1248–1256. https://doi.org/10.1016/j.cell.2016.02.043.
  • Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G. 2007. Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469. https://doi.org/10.1016/j.cell.2007.05.047.
  • Pi M, Kapoor K, Ye R, Nishimoto SK, Smith JC, Baudry J, Quarles LD. 2016. Evidence for osteocalcin binding and activation of GPRC6A in β-cells. Endocrinology 157:1866–1880. https://doi.org/10.1210/en.2015-2010.
  • Pi M, Wu Y, Quarles LD. 2011. GPRC6A mediates responses to osteocalcin in β-cells in vitro and pancreas in vivo. J Bone Miner Res 26:1680–1683. https://doi.org/10.1002/jbmr.390.
  • Pi M, Chen L, Huang MZ, Zhu W, Ringhofer B, Luo J, Christenson L, Li B, Zhang J, Jackson PD, Faber P, Brunden KR, Harrington JJ, Quarles LD. 2008. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One 3:e3858. https://doi.org/10.1371/journal.pone.0003858.
  • Wei J, Hanna T, Suda N, Karsenty G, Ducy P. 2014. Osteocalcin promotes β-cell proliferation during development and adulthood through Gprc6a. Diabetes 63:1021–1031. https://doi.org/10.2337/db13-0887.
  • Du J, Zhang M, Lu J, Zhang X, Xiong Q, Xu Y, Bao Y, Jia W. 2016. Osteocalcin improves nonalcoholic fatty liver disease in mice through activation of Nrf2 and inhibition of JNK. Endocrine 53:701–709. https://doi.org/10.1007/s12020-016-0926-5.
  • Ferron M, Hinoi E, Karsenty G, Ducy P. 2008. Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci U S A 105:5266–5270. https://doi.org/10.1073/pnas.0711119105.
  • Ye R, Pi M, Cox JV, Nishimoto SK, Quarles LD. 2017. CRISPR/Cas9 targeting of GPRC6A suppresses prostate cancer tumorigenesis in a human xenograft model. J Exp Clin Cancer Res 36:90. https://doi.org/10.1186/s13046-017-0561-x.
  • Clevers H, Nusse R. 2012. Wnt/β-catenin signaling and disease. Cell 149:1192–1205. https://doi.org/10.1016/j.cell.2012.05.012.
  • Nusse R, Clevers H. 2017. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169:985–999. https://doi.org/10.1016/j.cell.2017.05.016.
  • MacDonald BT, Tamai K, He X. 2009. Wnt/β-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26. https://doi.org/10.1016/j.devcel.2009.06.016.
  • Sherwood V. 2015. WNT signaling: an emerging mediator of cancer cell metabolism? Mol Cell Biol 35:2–10. https://doi.org/10.1128/MCB.00992-14.
  • Schinner S. 2009. Wnt-signaling and the metabolic syndrome. Horm Metab Res 41:159–163. https://doi.org/10.1055/s-0028-1119408.
  • Grant SF, Thorleifsson G, Reynisdottir I, Benediktsson R, Manolescu A, Sainz J, Helgason A, Stefansson H, Emilsson V, Helgadottir A, Styrkarsdottir U, Magnusson KP, Walters GB, Palsdottir E, Jonsdottir T, Gudmundsdottir T, Gylfason A, Saemundsdottir J, Wilensky RL, Reilly MP, Rader DJ, Bagger Y, Christiansen C, Gudnason V, Sigurdsson G, Thorsteinsdottir U, Gulcher JR, Kong A, Stefansson K. 2006. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet 38:320–323. https://doi.org/10.1038/ng1732.
  • Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV, Prentki M, Posner BI, Balding DJ, Meyre D, Polychronakos C, Froguel P. 2007. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445:881–885. https://doi.org/10.1038/nature05616.
  • Vaquero AR, Ferreira NE, Omae SV, Rodrigues MV, Teixeira SK, Krieger JE, Pereira AC. 2012. Using gene-network landscape to dissect genotype effects of TCF7L2 genetic variant on diabetes and cardiovascular risk. Physiol Genomics 44:903–914. https://doi.org/10.1152/physiolgenomics.00030.2012.
  • Wright WS, Longo KA, Dolinsky VW, Gerin I, Kang S, Bennett CN, Chiang SH, Prestwich TC, Gress C, Burant CF, Susulic VS, MacDougald OA. 2007. Wnt10b inhibits obesity in ob/ob and agouti mice. Diabetes 56:295–303. https://doi.org/10.2337/db06-1339.
  • Prestwich TC, Macdougald OA. 2007. Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol 19:612–617. https://doi.org/10.1016/j.ceb.2007.09.014.
  • Manolopoulos KN, Karpe F, Frayn KN. 2010. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes (Lond) 34:949–959. https://doi.org/10.1038/ijo.2009.286.
  • Mandviwala T, Khalid U, Deswal A. 2016. Obesity and cardiovascular disease: a risk factor or a risk marker? Curr Atheroscler Rep 18:21. https://doi.org/10.1007/s11883-016-0575-4.
  • Abranches MV, Oliveira FC, Conceiçao LL, Peluzio MD. 2015. Obesity and diabetes: the link between adipose tissue dysfunction and glucose homeostasis. Nutr Res Rev 28:121–132. https://doi.org/10.1017/S0954422415000098.
  • Rosen CJ, Bouxsein ML. 2006. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol 2:35–43. https://doi.org/10.1038/ncprheum0070.
  • Palermo A, Tuccinardi D, Defeudis G, Watanabe M, D'Onofrio L, Lauria Pantano A, Napoli N, Pozzilli P, Manfrini S. 2016. BMI and BMD: the potential interplay between obesity and bone fragility. Int J Environ Res Public Health 13:E544. https://doi.org/10.3390/ijerph13060544.
  • Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM. 2008. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967. https://doi.org/10.1038/nature07182.
  • Enerback S. 2010. Human brown adipose tissue. Cell Metab 11:248–252. https://doi.org/10.1016/j.cmet.2010.03.008.
  • Cohen P, Spiegelman BM. 2015. Brown and beige fat: molecular parts of a thermogenic machine. Diabetes 64:2346–2351. https://doi.org/10.2337/db15-0318.
  • Cypess A, Sanaz Lehman M, Williams G, Tal I, Rodman D, Goldfine A, Kuo F, Palmer E, Tseng Y, Doria A, Kolodny G, Kahn C. 2009. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360:1509–1517. https://doi.org/10.1056/NEJMoa0810780.
  • Virtanen K, Lidell M, Orava J, Heglind M, Westergren R, Niemi T, Taitonen M, Laine J, Savisto N, Enerback S, Nuutila P. 2009. Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525. https://doi.org/10.1056/NEJMoa0808949.
  • Kontani Y, Wang Y, Kimura K, Inokuma KI, Saito M, Suzuki-Miura T, Wang Z, Sato Y, Mori N, Yamashita H. 2005. UCP1 deficiency increases susceptibility to diet-induced obesity with age. Aging Cell 4:147–155. https://doi.org/10.1111/j.1474-9726.2005.00157.x.
  • Keipert S, Jastroch M. 2014. Brite/beige fat and UCP1—is it thermogenesis? Biochim Biophys Acta 1837:1075–1082. https://doi.org/10.1016/j.bbabio.2014.02.008.
  • Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong X, Rao RR, Lou J, Lokurkar I, Baur W, Castellot JJ, Rosen ED, Spiegelman BM. 2014. A smooth muscle-like origin for beige adipocytes. Cell Metab 19:810–820. https://doi.org/10.1016/j.cmet.2014.03.025.
  • Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM. 2012. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376. https://doi.org/10.1016/j.cell.2012.05.016.
  • Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ, Wu J, Gunawardana SC, Banks AS, Camporez JP, Jurczak MJ, Kajimura S, Piston DW, Mathis D, Cinti S, Shulman GI, Seale P, Spiegelman BM. 2014. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 156:304–316. https://doi.org/10.1016/j.cell.2013.12.021.
  • Cousin B, Cinti S, Morroni M, Raimbault S, Ricquier D, Penicaud L, Casteilla L. 1992. Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J Cell Sci 103:931–942.
  • Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM. 2012. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281. https://doi.org/10.1101/gad.177857.111.
  • Bostrom P1, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM. 2012. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468. https://doi.org/10.1038/nature10777.
  • Ohno H, Shinoda K, Spiegelman BM, Kajimura S. 2012. PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15:395–404. https://doi.org/10.1016/j.cmet.2012.01.019.
  • Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, Rosenbaum M, Zhao Y, Gu W, Farmer SR, Accili D. 2012. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of PPARγ. Cell 150:620–632. https://doi.org/10.1016/j.cell.2012.06.027.
  • Pan D, Fujimoto M, Lopes A, Wang YX. 2009. Twist-1 is a PPARδ-inducible, negative-feedback regulator of PGC-1α in brown fat metabolism. Cell 137:73–86. https://doi.org/10.1016/j.cell.2009.01.051.
  • Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galan-Diez M, Lacampagne A, Mitchell SJ, Mattison JA, Chen Y, Bacchetta J, Szulc P, Kitsis RN, de Cabo R, Friedman RA, Torsitano C, McGraw TE, Puchowicz M, Kurland I, Karsenty G. 2016. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab 23:1078–1092. https://doi.org/10.1016/j.cmet.2016.05.004.
  • Lee S, Suzuki T, Izawa H, Satoh A. 2016. The influence of the type of continuous exercise stress applied during growth periods on bone metabolism and osteogenesis. J Bone Metab 23:157–164. https://doi.org/10.11005/jbm.2016.23.3.157.
  • Leung JY, Kolligs FT, Wu R, Zhai Y, Kuick R, Hanash S, Cho KR, Fearon ER. 2002. Activation of AXIN2 expression by beta-catenin-T cell factor. J Biol Chem 277:21657–21665. https://doi.org/10.1074/jbc.M200139200.
  • Jho EH, Zhang T, Domon C, Joo CK, Freund JN, Costantini F. 2002. Wnt/β-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 22:1172–1183. https://doi.org/10.1128/MCB.22.4.1172-1183.2002.
  • Campbell JE, Ussher JR, Mulvihill EE, Kolic J, Baggio LL, Cao X, Liu Y, Lamont BJ, Morii T, Streutker CJ, Tamarina N, Philipson LH, Wrana JL, MacDonald PE, Drucker DJ. 2016. TCF1 links GIPR signaling to the control of beta cell function and survival. Nat Med 22:84–90. https://doi.org/10.1038/nm.3997.
  • Arce L, Yokoyama NN, Waterman ML. 2006. Diversity of LEF/TCF action in development and disease. Oncogene 25:7492–7504. https://doi.org/10.1038/sj.onc.1210056.
  • Cadigan K., Waterman M. 2012. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb Perspect Biol 4:a007906. https://doi.org/10.1101/cshperspect.a007906.
  • Pinheiro I, Margueron R, Shukeir N, Eisold M, Fritzsch C, Richter FM, Mittler G, Genoud C, Goyama S, Kurokawa M, Son J, Reinberg D, Lachner M, Jenuwein T. 2012. Prdm3 and Prdm16 are H3K9me1 methyltransferases required for mammalian heterochromatin integrity. Cell 150:948–960. https://doi.org/10.1016/j.cell.2012.06.048.
  • Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP, Spiegelman BM. 2009. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 460:1154–1158. https://doi.org/10.1038/nature08262.
  • Zeng X, Jedrychowski MP, Chen Y, Serag S, Lavery GG, Gygi SP, Spiegelman BM. 2016. Lysine-specific demethylase 1 promotes brown adipose tissue thermogenesis via repressing glucocorticoid activation. Genes Dev 30:1822–1836. https://doi.org/10.1101/gad.285312.116.
  • Lee P, Brychta RJ, Collins MT, Linderman J, Smith S, Herscovitch P, Millo C, Chen KY, Celi FS. 2013. Cold-activated brown adipose tissue is an independent predictor of higher bone mineral density in women. Osteoporos Int 24:1513–1518. https://doi.org/10.1007/s00198-012-2110-y.
  • Ponrartana S, Aggabao PC, Hu HH, Aldrovandi GM, Wren TA, Gilsanz V. 2012. Brown adipose tissue and its relationship to bone structure in pediatric patients. J Clin Endocrinol Metab 97:2693–2698. https://doi.org/10.1210/jc.2012-1589.
  • Mizokami A, Yasutake Y, Gao J, Matsuda M, Takahashi I, Takeuchi H, Hirata M. 2013. Osteocalcin induces release of glucagon-like peptide-1 and thereby stimulates insulin secretion in mice. PLoS One 8:e57375. https://doi.org/10.1371/journal.pone.0057375.
  • Kypta RM, Waxman J. 2012. Wnt/β-catenin signaling in prostate cancer. Nat Rev Urol 9:418–428. https://doi.org/10.1038/nrurol.2012.116.
  • Tseng Y, Kriauciunas K, Kokkotou E, Kahn C. 2004. Differential roles of insulin receptor substrates in brown adipocyte differentiation. Mol Cell Biol 24:1918–1929. https://doi.org/10.1128/MCB.24.5.1918-1929.2004.
  • Koteja P, Garland T, Jr, Sax JK, Swallow JG, Carter PA. 1999. Behaviour of house mice artificially selected for high levels of voluntary wheel running. Anim Behav 58:1307–1318. https://doi.org/10.1006/anbe.1999.1270.
  • Gan XQ, Wang JY, Xi Y, Wu ZL, Li YP, Li L. 2008. Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. J Cell Biol 180:1087–1100. https://doi.org/10.1083/jcb.200710050.
  • Hashimoto Y, Matsuzaki E, Higashi K, Takahashi-Yanaga F, Takano A, Hirata M, Nishimura F. 2015. Sphingosine-1-phosphate inhibits differentiation of C3H10T1/2 cells into adipocyte. Mol Cell Biochem 401:39–47. https://doi.org/10.1007/s11010-014-2290-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.