13
Views
22
CrossRef citations to date
0
Altmetric
Article

Homeodomain Transcription Factor Phox2a, via Cyclic AMP-Mediated Activation, Induces p27Kip1 Transcription, Coordinating Neural Progenitor Cell Cycle Exit and Differentiation

, , , &
Pages 8826-8839 | Received 01 Apr 2006, Accepted 01 Sep 2006, Published online: 27 Mar 2023

REFERENCES

  • Adachi, M., and E. Lewis. 2002. The paired-like homeodomain protein, arix, mediates protein kinase A-stimulated dopamineβ -hydroxylase gene . transcription through its phosphorylation status. J. Biol. Chem. 277:22915–22924.
  • Anderson, D. J., J. F. Carnahan, A. Michelsohn, and P. H. Patterson. 1991. Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage. J. Neurosci. 11:3507–3519.
  • Anderson, D. J. 1993. Molecular control of cell fate in the neural crest: the sympathoadrenal lineage. Annu. Rev. Neurosci. 16:129–158.
  • Andrisani, O., and J. E. Dixon. 1990. Identification and purification of a novel 120-kDa protein that recognizes the cAMP-responsive element. J. Biol. Chem. 265:3212–3218.
  • Benjanirut, C., M. Paris, W.-H. Wang, S. Hong, K. Kim, R. L. Hullinger, and O. M. Andrisani. 2006. The cAMP pathway via CREB, in synergy with BMP2, regulates transcription from the mammalian Phox2a promoter via cAMP-response-element binding sites. J. Biol. Chem. 281:2969–2981.
  • Besson, A., M. Gurian-West, A. Schmidt, A. Hall, and J. M. Roberts. 2004. p27Kip1 modulates cell migration through the regulation of RhoA activation. Genes Dev. 18:862–876.
  • Bilodeau, M. L., T. Boulineau, R. L. Hullinger, and O. M. Andrisani. 2000. Cyclic AMP signaling functions as a bimodal switch in sympathoadrenal cell development in cultured primary neural crest cells. Mol. Cell. Biol. 20:3004–3014.
  • Bilodeau, M., M. Ji, M. Paris, and O. M. Andrisani. 2005. Adenosine signaling regulates differentiation of both neural crest-derived and CNS-derived catecholaminergic neurons. Mol. Cell Neurosci. 29:394–404.
  • Chen, F., E. Kim, C. C. Wang, and L. E. Harrison. 2005. Ciglitazone-induced p27 gene transcriptional activity is mediated through Sp1 and is negatively regulated by the MAPK signaling pathway. Cell Signal 17:1572–1577.
  • Chen, P., and N. Segil. 1999. p27Kip1 links cell proliferation to morphogenesis in the developing organ of Corti. Development 126:1581–1590.
  • Chen, P., F. Zindy, C. Abdala, F. Liu, X. Li, M. F. Roussel, and N. Segil. 2003. Progressive hearing loss in mice lacking the cyclin-dependent kinase inhibitor Ink4d. Nat. Cell. Biol. 5:422–426.
  • Chen, S., M. Ji, M. Paris, R. L. Hullinger, and O. M. Andrisani. 2005. The cAMP pathway regulates both transcription and activity of the paired homeobox transcription factor Phox2a required for development of neural crest-derived and CNS-derived catecholaminergic neurons. J. Biol. Chem. 280:41025–41036.
  • Cheng, M. 1999. The p21 (Cip1) and p27 (Kip1) CDK‘ inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J. 18:1571–1583.
  • Coqueret, O. 2003. New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell. Biol. 13:65–70.
  • Cremisi, F., A. Philpott, and S. Ohnuma. 2003. Cell cycle and cell fate interactions in neural development. Curr. Opin. Neurobiol. 13:26–33.
  • Cunningham, J. J., E. M. Levine, F. Zindy, O. Goloubeva, M. F. Roussel, and R. J. Smeyne. 2002. The cyclin-dependent kinase inhibitors p19(Ink4d) and p27(Kip1) are coexpressed in select retinal cells and act cooperatively to control cell cycle exit. Mol. Cell Neurosci. 19:359–374.
  • Defoe, D., and E. M. Levine. 2003. Expression of the cyclin-dependent kinase inhibitor p27Kip1 by developing retinal pigment epithelium. Gene Expr. Patterns 3:615–619.
  • Drissi, H., D. Hushka, F. Aslam, Q. Nguyen, E. Buffone, A. Koff, A. J. V. Wijnen, J. B Lian, J. L. Stein, and G. S. Stein. 1999. The cell cycle regulator p27kip1 contributes to growth and differentiation of osteoblasts. Cancer Res. 59:3705–3711.
  • Dubreuil, V., M. R. Hirsch, J. Pattyn, F. Brunet, and C. Goridis. 2000. The Phox2b transcription factor coordinately regulates neuronal cell cycle exit and identity. Development 127:5191–5201.
  • Durand, B., F-B. Gao, and M. Raff. 1997. Accumulation of the cyclin-dependent kinase inhibitor p27/Kip1 and the timing of oligodendrocyte differentiation. EMBO J. 16:306–317.
  • Durand, B., M. L. Fero, J. M. Roberts, and M. C. Raff. 1998. p27Kip1 alters the response of cells to mitogen and is part of a cell-intrinsic timer that arrests the cell cycle and initiates differentiation. Curr. Biol. 8:431–440.
  • Dyer, M. A., and C. L. Cepko. 2001. p27Kip1 and p57Kip2 regulate proliferation in distinct retinal progenitor cell populations. J. Neurosci. 21:4259–4271.
  • Fero, M. L., M. Rivkin, M. Tasch, P. Porter, C. E. Carow, E. Firpo, K. Polyak, L. H. Tsai, V. Broudy, R. M. Perlmutter, K. Kaushansky, and J. M. Roberts. 1996. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27 (Kip1)-deficient mice. Cell 5:733–744.
  • Franklin, D. S., V. L. Godfrey, D. A. O'Brien, C. Deng, and Y. Xiong. 2000. Functional collaboration between different cyclin-dependent kinase inhibitors suppresses tumor growth with distinct tissue specificity. Mol. Cell. Biol. 20:6147–6158.
  • Goridis, C., and H. Rohrer. 2002. Specification of catecholaminergic and serotonergic neurons. Nat. Rev. Neurosci. 3:531–541.
  • Gossen, M., and H. Bujard. 1992. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl. Acad. Sci. USA 89:5547–5551.
  • Guo, S., S. W. Wilson, S. Cooke, A. B. Chitnis, W. Driever, and A. Rosenthal.1999. Mutations in the zebrafish unmask shared regulatory pathways controlling the development of catecholaminergic neurons. Dev. Biol. 208:473–487.
  • Hardcastle, Z., and N. Papalopulu. 2000. Distinct effects of XBF-1 in regulating the cell cycle inhibitor p27XIC1 and imparting a neural fate. Development 127:1303–1314.
  • Hiromura, K., J. W. Pippin, M. L. Fero, J. M. Roberts, and S. J. Shankland. 1999. Modulation of apoptosis by the cyclin-dependent kinase inhibitor p27 (Kip1). J. Clin. Investig. 103:597–604.
  • Howard, M. J. 2005. Mechanisms and perspectives on differentiation of autonomic neurons. Dev. Biol. 277:271–286.
  • Ishibashi, M., S. L. Ang, K. Shiota, S. Nakanishi, R. Kageyama, and F. Guillemot. 1995. Targeted disruption of mammalian hairy and enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects. Genes Dev. 9:3136–3148.
  • Karnik, S. K., C. M. Hughes, X. Gu, O. Rozenblatt-Rosen, G. W. McLean, Y. Xiong, M. Meyerson, and S. K. Kim. 2005. Menin regulates pancreatic islet growth by promoting histone methylation and expression of genes encoding p27Kip1 and p18INK4c. Proc. Natl. Acad. Sci. USA 102:14659–14664.
  • Kato, J. Y., M. Matsuoka, K. Polyak, J. Massague, and C. J. Sherr. 1994. Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell 79:487–496.
  • Kiyokawa, H., R. D. Kineman, K. O. Manova-Todorova, V. C. Soares, E. S. Hoffman, M. Ono, D. Khanam, A. C. Hayday, L. A. Frohman, and A. Koff. 1996. Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27 (Kip1). Cell 5:721–732.
  • LaBaer, J., M. Garrett, L. Stevenson, J. Slingerland, C. Sandhu, H. Chou, A. Fattaey, and E. Harlow. 1997. New functional activities for the p21 family of CDK inhibitors. Genes Dev. 11:847–862.
  • Langley, K., and N. J. Grant. 1999. Molecular markers of sympathoadrenal cells. Cell Tissue Res. 298:185–206.
  • Laub, F., L. Lei, H. Sumiyoshi, D. Kajimura, C. Dragomir, S. Smaldone, A. C. Puche, T. J. Petros, C. Mason, L. F. Parada, and F. Ramirez. 2005. Transcription factor KLF7 is important for neuronal morphogenesis in selected regions of the nervous system. Mol. Cell. Biol. 25:5699–5711.
  • Le Douarin, N. M., S. Creuzet, G. Couly, and E. Dupin. 2004. Neural crest plasticity and its limits. Development 131:4637–4650.
  • Lee, S., C. Tarn, W-H. Wang, S. Chen, R. L. Hullinger, and O. M. Andrisani. 2002. Hepatitis B virus X protein differentially regulates cell cycle progression in X-transforming versus nontransforming hepatocyte (AML 12) cell lines. J. Biol. Chem. 277:8730–8740.
  • Levine, E. M. 2004. Cell cycling through development. Development 131:2241–2246.
  • Levine, E. M., and E. S. Green. 2004. Cell-intrinsic regulators of proliferation in vertebrate retinal progenitors. Semin. Cell Dev. Biol. 15:63–74.
  • Levine, E. M., J. Close, M. Fero, A. Ostrovsky, and T. A. Reh. 2000. p27Kip1 regulates cell cycle withdrawal of late multipotent progenitor cells in the mammalian retina. Dev. Biol. 219:299–314.
  • Lo, L., M. C. Tiveron, and D. J. Anderson. 1998. MASH1 activates expression of the paired homeodomain transcription factor Phox2a, and couples pan-neuronal and subtype-specific components of autonomic neuronal identity. Development 125:609–620.
  • Lo, L., X. Morin, J. F. Brunet, and D. J. Anderson. 1999. Specification . of neurotransmitter identity by Phox2 proteins in neural crest stem cells. Neuron 22:693–705.
  • Malek, N. P., H. Sundberg, S. McGrew, K. Nakayama, T. R. Kyriakides, and J. M. Roberts. 2001. A mouse knock-in model exposes sequential proteolytic pathways that regulate p27Kip1 in G1 and S phase. Nature 413:323–327.
  • Matsuoka, S., M. Edwards, C. Bai, S. Parker, P. Zhang, and A. Baldini. 1995. p57 Kip2, a structurally distinct member of the p21 Cip1 inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9:650–662.
  • McAllister, S. S., M. Becker-Hapak, G. Pintucci, M. Pagano, and S. F. Dowdy. 2003. Novel p27(kip1) C-terminal scatter domain mediates Rac-dependent cell migration independent of cell cycle arrest functions. Mol. Cell. Biol. 23:216–228.
  • Milne, T. A., C. M. Hughes, R. Lloyd, Z. Yang, O. Rozenblatt-Rosen, Y. Dou, R. W. Schnepp, C. Krankel, V. A. LiVolsi, D. Gibbs, X. Hua, R. G. Roeder, M. Meyerson, and J. L. Hess. 2005. Menin and MLL cooperatively regulate expression of cyclin-dependent kinase inhibitors. Proc. Natl. Acad. Sci. USA 102:749–754.
  • Mistry, S. J., and G. F. Atweh. 2001. Stathmin inhibition enhances okadaic acid-induced mitotic arrest. J. Biol. Chem. 276:31209–31215.
  • Morin, X., H. Cremer, R. Hirsch, R. P. Kapur, C. Goridis, and J. F. Brunet. 1997. Defects in sensory and autonomic ganglia and absence of locus coeruleus in mice deficient for the homeobox gene Phox2a. Neuron 18:411–423.
  • Murata, K., M. Hattori, N. Hirai, Y. Shinozuka, H. Hirata, R. Kageyama, T. Sakai, and N. Minato. 2005. Hes1 directly controls cell proliferation through the transcriptional repression of p27Kip1. Mol. Cell. Biol. 25:4262–4271.
  • Nagahama, H., S. Hatakeyama, K. Nakayama, M. Nagata, K. Tomita, and K.-I. Nakayama. 2001. Spatial and temporal expression patterns of the cyclin-dependent kinase (CDK) inhibitors p27Kip1 and p57Kip2 during mouse development. Anat. Embryol. 203:77–87.
  • Nakayama, K., N. Ishida, M. Shirane, A. Inomata, T. Inoue, N. Shishido, I. Horii, D. Y. Loh, and K. Nakayama. 1996. Mice lacking p27 (Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors Cell 5:707–720.
  • Ophascharoensuk, V., M. L. Fero, J. Hughes, J. M. Roberts, and S. J. Shankland. 1998. The cyclin-dependent kinase inhibitor p27Kip1 safeguards against inflammatory injury. Nat. Med. 4:575–580.
  • Parker, S., G. Eichele, P. Zhang, A. Rawls, A. Sands, and A. Bradley. 1995. p53-independent expression of p21Cip1 in muscle and other terminally differentiating cells. Science 267:1024–1027.
  • Pattyn, A., X. Morin, H. Cremer, C. Goridis, and J. F. Brunet. 1999. The homeobox gene Phox2b is essential for the development of autonomic neural crest derivatives. Nature 399:366–370.
  • Philipp-Staheli, J., S. R. Payne, and C. J. Kemp. 2001. p27(Kip1): regulation and function of a haploinsufficient tumor suppressor and its misregulation in cancer. Exp. Cell Res. 264:148–168.
  • Polyak, K., J-Y. Kato, M. J. Solomon, C. J. Sherr, and J. Massague. 1994. P27KIP1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev. 8:9–22.
  • Qi, Y., J. K. Wang, M. McMillian, and D. M. Chikaraishi. 1997. Characterization of a CNS cell line, CAD, in which morphological differentiation is initiated by serum deprivation. J. Neurosci. 17:1217–1225.
  • Reissmann, E., U. Ernsburger, P. H. Francis-West, D. Rueger, P. D. Brickell, and H. Rohrer. 1996. Involvement of bone morphogenetic protein-4 and bone morphogenetic protein-7 in the differentiation of the adrenergic phenotype in developing sympathetic neurons. Development 122:2079–2088.
  • Ruas, M., and G. Peters. 1998. The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim. Biophys. Acta 1378:F115–177.
  • Schneider, C., H. Wicht, J. Enderich, M. Wegner, and H. Rohrer. 1999. Bone morphogenetic proteins are required in vivo for the generation of sympathetic neurons. Neuron 24:861–879.
  • Sgambato, A., A. Cittadini, B. Faraglia, and I. B. Weinstein. 2000. Multiple functions of p27Kip1 and its alterations in tumor cells. J. Cell Physiol. 183:18–27.
  • Shah, N. M., A. Groves, and D. J. Anderson. 1996. Alternative neural crest cell fates are instructively promoted by TGFβ superfamily members. Cell 85:331–343.
  • Sherr, C. J., and J. M. Roberts. 1999. CDK inhibitors: positive and negative regulators of G-phase progression. Genes Dev. 13:1501–1512.
  • Sherr, C. J., and J. M. Roberts. 2004. Living with or without cyclins and cyclin-dependent kinases. Genes Dev. 18:2699–2711.
  • Stanke, M., D. Junghans, M. Geissen, C. Goridis, U. Ernsberger, and H. Rohrer. 1999. The Phox2 homeodomain proteins are sufficient to promote the development of sympathetic neurons. Development 126:4087–4094.
  • Suri, C., B. P. Fung, A. S. Tischler, and D. M. Chikaraishi. 1993. Catecholaminergic cell lines from the brain and adrenal glands of tyrosine hydroxylase-SV40 T antigen transgenic mice. J. Neurosci. 13:1280–1291.
  • Swanson, D. J., E. Zellmer, and E. J. Lewis. 1997. The homeodomain protein Arix interacts synergistically with cyclic AMP to regulate expression of neurotransmitter biosynthetic genes. J. Biol. Chem. 272:27382–27392.
  • Tamamori-Adachi, M., K. Hayashida, K. Nobori, C. Omizu, K. Yamada, N. Sakamoto, T. Kamura, K. Fukuda, S. Ogawa, K. I. Nakayama, and S. Kitajima. 2004. Down-regulation of p27Kip1 promotes cell proliferation of rat neonatal cardiomyocytes induced by nuclear expression of cyclin D1 and CDK4. J. Biol. Chem. 279:50429–50436.
  • Tarn, C., M. L. Bilodeau, R. L. Hullinger, and O. M. Andrisani. 1999. Differential immediate early gene expression in conditional hepatitis B virus pX-transforming versus nontransforming hepatocyte cell lines. J. Biol. Chem. 274:2327–2336.
  • Tokumoto, Y. M., J. A. Apperly, F. B. Gao, and M. C. Raff. 2002. Posttranscriptional regulation of p18 and p27 Cdk inhibitor proteins and the timing of oligodendrocyte differentiation. Dev. Biol. 245:224–234.
  • Tong, W., H. Kiyokawa, T. J. Soos, M. S. Park, and V. C. Soares. 1998. The absence of p27Kip1, an inhibitor of G1 cyclin-dependent kinases, uncouples differentiation and growth arrest during the granulose luteal transition. Cell Growth Differ. 9:787–794.
  • Williamson, E. A., I. Wolf, J. O'Kelly, S. Bose, S. Tanosaki, and H. P. Koeffler. 2006. BRCA1 and FOXA1 proteins coregulates the expression of the cell cycle-dependent kinase inhibitor p27(Kip1). Oncogene 25:1391–1399.
  • Zellmer, E., Z. Zhang, D. Greco, J. Rhodes, S. Cassel, and E. J. Lewis. 1995. A homeodomain protein selectively expressed in noradrenergic tissue regulates transcription of neurotransmitter biosynthetic genes. J. Neurosci. 15:8109–8120.
  • Zindy, F., J. J. Cunningham, C. J. Sherr, S. Jogal, R. J. Smeyne, and M. F. Roussel. 1999. Postnatal neuronal proliferation in mice lacking Ink4d and Kip1 inhibitors of cyclin-dependent kinases. Proc. Natl. Acad. Sci. USA 96:3462–13467.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.