29
Views
69
CrossRef citations to date
0
Altmetric
Article

MicroRNA-27a Regulates Beta Cardiac Myosin Heavy Chain Gene Expression by Targeting Thyroid Hormone Receptor β1 in Neonatal Rat Ventricular Myocytes

, , , , , , , , , , , , , , & show all
Pages 744-755 | Received 20 May 2010, Accepted 29 Nov 2010, Published online: 20 Mar 2023

REFERENCES

  • Callis, T. E., et al. 2009. MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest. 119:2772–2786.
  • Camelliti, P., T. K. Borg, and P. Kohl. 2005. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc. Res. 65:40–51.
  • Care, A., et al. 2007. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13:613–618.
  • Chen, J. F., et al. 2008. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc. Natl. Acad. Sci. U. S. A. 105:2111–2116.
  • Cheng, Y., et al. 2007. MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy? Am. J. Pathol. 170:1831–1840.
  • Cullen, B. R. 2004. Transcription and processing of human microRNA precursors. Mol. Cell 16:861–865.
  • da Costa Martins, P. A., et al. 2008. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118:1567–1576.
  • Dillmann, W. 2010. Cardiac hypertrophy and thyroid hormone signaling. Heart Fail. Rev. 15:125–132.
  • Divakaran, V., and D. L. Mann. 2008. The emerging role of microRNAs in cardiac remodeling and heart failure. Circ. Res. 103:1072–1083.
  • Ebert, M. S., J. R. Neilson, and P. A. Sharp. 2007. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4:721–726.
  • Edwards, J. G., J. J. Bahl, I. L. Flink, S. Y. Cheng, and E. Morkin. 1994. Thyroid hormone influences beta myosin heavy chain (beta MHC) expression. Biochem. Biophys. Res. Commun. 199:1482–1488.
  • Galli, E., A. Pingitore, and G. Iervasi. 2010. The role of thyroid hormone in the pathophysiology of heart failure: clinical evidence. Heart Fail. Rev. 15:155–169.
  • Gloss, B., et al. 2001. Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 142:544–550.
  • Gupta, M. P. 2007. Factors controlling cardiac myosin-isoform shift during hypertrophy and heart failure. J. Mol. Cell. Cardiol. 43:388–403.
  • Hasegawa, K., S. J. Lee, S. M. Jobe, B. E. Markham, and R. N. Kitsis. 1997. cis-Acting sequences that mediate induction of beta-myosin heavy chain gene expression during left ventricular hypertrophy due to aortic constriction. Circulation 96:3943–3953.
  • Hasegawa, K., M. B. Meyers, and R. N. Kitsis. 1997. Transcriptional coactivator p300 stimulates cell type-specific gene expression in cardiac myocytes. J. Biol. Chem. 272:20049–20054.
  • Hidaka, K., Lee, et al. 2003. Chamber-specific differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells. FASEB J. 17:740–742.
  • Hodin, R. A., M. A. Lazar, and W. W. Chin. 1990. Differential and tissue-specific regulation of the multiple rat c-erbA messenger RNA species by thyroid hormone. J. Clin. Invest. 85:101–105.
  • Ikeda, M., M. Rhee, and W. W. Chin. 1994. Thyroid hormone receptor monomer, homodimer, and heterodimer (with retinoid-X receptor) contact different nucleotide sequences in thyroid hormone response elements. Endocrinology 135:1628–1638.
  • Ji, J., et al. 2009. Over-expressed microRNA-27a and 27b influence fat accumulation and cell proliferation during rat hepatic stellate cell activation. FEBS Lett. 583:759–766.
  • Kaichi, S., Takaya, et al. 2010. Cyclin-dependent kinase 9 forms a complex with GATA4 and is involved in the differentiation of mouse ES cells into cardiomyocytes. J. Cell. Physiol. [Epub ahead of print]. doi:10.1002/jcp.22336.
  • Kim, S. Y., et al. 2010. miR-27a is a negative regulator of adipocyte differentiation via suppressing PPARgamma expression. Biochem. Biophys. Res. Commun. 392:323–328.
  • Kinugawa, K., et al. 2001. Regulation of thyroid hormone receptor isoforms in physiological and pathological cardiac hypertrophy. Circ. Res. 89:591–598.
  • Lazar, M. A. 1993. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr. Rev. 14:184–193.
  • Liu, N., et al. 2008. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev. 22:3242–3254.
  • Lompre, A. M., B. Nadal-Ginard, and V. Mahdavi. 1984. Expression of the cardiac ventricular alpha- and beta-myosin heavy chain genes is developmentally and hormonally regulated. J. Biol. Chem. 259:6437–6446.
  • Morkin, E. 2000. Control of cardiac myosin heavy chain gene expression. Microsc. Res. Tech. 50:522–531.
  • National Institutes of Health. 1996. Guide for the care and use of laboratory animals. Publication 85-23. National Institutes of Health, Bethesda, MD.
  • Nishi, H., et al. 2010. MicroRNA-15b modulates cellular ATP levels and degenerates mitochondria via Arl2 in neonatal rat cardiac myocytes. J. Biol. Chem. 285:4920–4930.
  • Ojamaa, K., J. D. Klemperer, S. S. MacGilvray, I. Klein, and A. Samarel. 1996. Thyroid hormone and hemodynamic regulation of beta-myosin heavy chain promoter in the heart. Endocrinology 137:802–808.
  • Pall, G. S., C. Codony-Servat, J. Byrne, L. Ritchie, and A. Hamilton. 2007. Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by Northern blot. Nucleic Acids Res. 35:e60.
  • Qi, M., K. Ojamaa, E. G. Eleftheriades, I. Klein, and A. M. Samarel. 1994. Regulation of rat ventricular myosin heavy chain expression by serum and contractile activity. Am. J. Physiol. 267:C520–C528.
  • Rockman, H. A., et al. 1991. Segregation of atrial-specific and inducible expression of an atrial natriuretic factor transgene in an in vivo murine model of cardiac hypertrophy. Proc. Natl. Acad. Sci. U. S. A. 88:8277–8281.
  • Sayed, D., C. Hong, I. Y. Chen, J. Lypowy, and M. Abdellatif. 2007. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res. 100:416–424.
  • Strait, K. A., H. L. Schwartz, A. Perez-Castillo, and J. H. Oppenheimer. 1990. Relationship of c-erbA mRNA content to tissue triiodothyronine nuclear binding capacity and function in developing and adult rats. J. Biol. Chem. 265:10514–10521.
  • Sucharov, C., M. R. Bristow, and J. D. Port. 2008. miRNA expression in the failing human heart: functional correlates. J. Mol. Cell. Cardiol. 45:185–192.
  • Swanson, E. A., et al. 2003. Cardiac expression and function of thyroid hormone receptor beta and its PV mutant. Endocrinology 144:4820–4825.
  • Takaya, T., Ono, et al. 2009. MicroRNA-1 and microRNA-133 in spontaneous myocardial differentiation of mouse embryonic stem cells. Circ. J. 73:1492–1497.
  • Tatsuguchi, M., et al. 2007. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J. Mol. Cell. Cardiol. 42:1137–1141.
  • Thum, T., et al. 2007. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116:258–267.
  • Tong, G. X., M. Jeyakumar, M. R. Tanen, and M. K. Bagchi. 1996. Transcriptional silencing by unliganded thyroid hormone receptor beta requires a soluble corepressor that interacts with the ligand-binding domain of the receptor. Mol. Cell. Biol. 16:1909–1920.
  • van Rooij, E., W. S. Marshall, and E. N. Olson. 2008. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ. Res. 103:919–928.
  • van Rooij, E., et al. 2009. A family of microRNAs encoded by myosin genes governs myosin expression and muscle performance. Dev. Cell 17:662–673.
  • van Rooij, E., et al. 2006. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. U. S. A. 103:18255–18260.
  • van Rooij, E., et al. 2007. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316:575–579.
  • van Rooij, E., et al. 2008. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. U. S. A. 105:13027–13032.
  • Weiss, A., and L. A. Leinwand. 1996. The mammalian myosin heavy chain gene family. Annu. Rev. Cell Dev. Biol. 12:417–439.
  • Yanazume, T., et al. 2003. Cardiac p300 is involved in myocyte growth with decompensated heart failure. Mol. Cell. Biol. 23:3593–3606.
  • Zhao, Y., et al. 2007. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2. Cell 129:303–317.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.