52
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Eya2, a Target Activated by Plzf, Is Critical for PLZF-RARA-Induced Leukemogenesis

, , , &
Article: e00585-16 | Received 28 Oct 2016, Accepted 11 Apr 2017, Published online: 17 Mar 2023

REFERENCES

  • Visvader JE. 2011. Cells of origin in cancer. Nature 469:314–322. https://doi.org/10.1038/nature09781.
  • Kreso A, Dick JE. 2014. Evolution of the cancer stem cell model. Cell Stem Cell 14:275–291. https://doi.org/10.1016/j.stem.2014.02.006.
  • Rosenbauer F, Tenen DG. 2007. Transcription factors in myeloid development: balancing differentiation with transformation. Nat Rev Immunol 7:105–117. https://doi.org/10.1038/nri2024.
  • Kitamura T, Watanabe-Okochi N, Enomoto Y, Nakahara F, Oki T, Komeno Y, Kato N, Doki N, Uchida T, Kagiyama Y, Togami K, Kawabata KC, Nishimura K, Hayashi Y, Nagase R, Saika M, Fukushima T, Asada S, Fujino T, Izawa Y, Horikawa S, Fukuyama T, Tanaka Y, Ono R, Goyama S, Nosaka T, Kitaura J, Inoue D. 2016. Novel working hypothesis for pathogenesis of hematological malignancies: combination of mutations-induced cellular phenotypes determines the disease (cMIP-DD). J Biochem 159:17–25. https://doi.org/10.1093/jb/mvv114.
  • Doulatov S, Notta F, Rice KL, Howell L, Zelent A, Licht JD, Dick JE. 2009. PLZF is a regulator of homeostatic and cytokine-induced myeloid development. Genes Dev 23:2076–2087. https://doi.org/10.1101/gad.1788109.
  • Barna M, Merghoub T, Costoya JA, Ruggero D, Branford M, Bergia A, Samori B, Pandolfi PP. 2002. Plzf mediates transcriptional repression of HoxD gene expression through chromatin remodeling. Dev Cell 3:499–510. https://doi.org/10.1016/S1534-5807(02)00289-7.
  • Reid A, Gould A, Brand N, Cook M, Strutt P, Li J, Licht J, Waxman S, Krumlauf R, Zelent A. 1995. Leukemia translocation gene, PLZF, is expressed with a speckled nuclear pattern in early hematopoietic progenitors. Blood 86:4544–4552.
  • Liu TM, Lee EH, Lim B, Shyh-Chang N. 2016. Concise review: balancing stem cell self-renewal and differentiation with PLZF. Stem Cells 34:277–287. https://doi.org/10.1002/stem.2270.
  • Vincent-Fabert C, Platet N, Vandevelde A, Poplineau M, Koubi M, Finetti P, Tiberi G, Imbert AM, Bertucci F, Duprez E. 2016. PLZF mutation alters mouse hematopoietic stem cell function and cell cycle progression. Blood 127:1881–1885. https://doi.org/10.1182/blood-2015-09-666974.
  • Ono R, Masuya M, Nakajima H, Enomoto Y, Miyata E, Nakamura A, Ishii S, Suzuki K, Shibata-Minoshima F, Katayama N, Kitamura T, Nosaka T. 2013. Plzf drives MLL-fusion-mediated leukemogenesis specifically in long-term hematopoietic stem cells. Blood 122:1271–1283. https://doi.org/10.1182/blood-2012-09-456665.
  • Chen SJ, Zelent A, Tong JH, Yu HQ, Wang ZY, Derre J, Berger R, Waxman S, Chen Z. 1993. Rearrangements of the retinoic acid receptor alpha and promyelocytic leukemia zinc finger genes resulting from t(11;17)(q23;q21) in a patient with acute promyelocytic leukemia. J Clin Invest 91:2260–2267. https://doi.org/10.1172/JCI116453.
  • He LZ, Merghoub T, Pandolfi PP. 1999. In vivo analysis of the molecular pathogenesis of acute promyelocytic leukemia in the mouse and its therapeutic implications. Oncogene 18:5278–5292. https://doi.org/10.1038/sj.onc.1203088.
  • Zelent A, Guidez F, Melnick A, Waxman S, Licht JD. 2001. Translocations of the RARα gene in acute promyelocytic leukemia. Oncogene 20:7186–7203. https://doi.org/10.1038/sj.onc.1204766.
  • Zeisig BB, Kwok C, Zelent A, Shankaranarayanan P, Gronemeyer H, Dong S, So CW. 2007. Recruitment of RXR by homotetrameric RARα fusion proteins is essential for transformation. Cancer Cell 12:36–51. https://doi.org/10.1016/j.ccr.2007.06.006.
  • Ablain J, de Thé H. 2011. Revisiting the differentiation paradigm in acute promyelocytic leukemia. Blood 117:5795–5802. https://doi.org/10.1182/blood-2011-02-329367.
  • de Thé H, Chen Z. 2010. Acute promyelocytic leukaemia: novel insights into the mechanisms of cure. Nat Rev Cancer 10:775–783. https://doi.org/10.1038/nrc2943.
  • Dos Santos GA, Kats L, Pandolfi PP. 2013. Synergy against PML-RARa: targeting transcription, proteolysis, differentiation, and self-renewal in acute promyelocytic leukemia. J Exp Med 210:2793–2802. https://doi.org/10.1084/jem.20131121.
  • Rego EM, Ruggero D, Tribioli C, Cattoretti G, Kogan S, Redner RL, Pandolfi PP. 2006. Leukemia with distinct phenotypes in transgenic mice expressing PML/RARα, PLZF/RARα or NPM/RARα. Oncogene 25:1974–1979. https://doi.org/10.1038/sj.onc.1209216.
  • Boukarabila H, Saurin AJ, Batsche E, Mossadegh N, van Lohuizen M, Otte AP, Pradel J, Muchardt C, Sieweke M, Duprez E. 2009. The PRC1 Polycomb group complex interacts with PLZF/RARA to mediate leukemic transformation. Genes Dev 23:1195–1206. https://doi.org/10.1101/gad.512009.
  • Rice KL, Hormaeche I, Doulatov S, Flatow JM, Grimwade D, Mills KI, Leiva M, Ablain J, Ambardekar C, McConnell MJ, Dick JE, Licht JD. 2009. Comprehensive genomic screens identify a role for PLZF-RARα as a positive regulator of cell proliferation via direct regulation of c-MYC. Blood 114:5499–5511. https://doi.org/10.1182/blood-2009-03-206524.
  • He LZ, Bhaumik M, Tribioli C, Rego EM, Ivins S, Zelent A, Pandolfi PP. 2000. Two critical hits for promyelocytic leukemia. Mol Cell 6:1131–1141. https://doi.org/10.1016/S1097-2765(00)00111-8.
  • Guidez F, Parks S, Wong H, Jovanovic JV, Mays A, Gilkes AF, Mills KI, Guillemin MC, Hobbs RM, Pandolfi PP, de The H, Solomon E, Grimwade D. 2007. RARα-PLZF overcomes PLZF-mediated repression of CRABPI, contributing to retinoid resistance in t(11;17) acute promyelocytic leukemia. Proc Natl Acad Sci U S A 104:18694–18699. https://doi.org/10.1073/pnas.0704433104.
  • Bonini NM, Leiserson WM, Benzer S. 1993. The eyes absent gene: genetic control of cell survival and differentiation in the developing Drosophila eye. Cell 72:379–395. https://doi.org/10.1016/0092-8674(93)90115-7.
  • Jemc J, Rebay I. 2007. The eyes absent family of phosphotyrosine phosphatases: properties and roles in developmental regulation of transcription. Annu Rev Biochem 76:513–538. https://doi.org/10.1146/annurev.biochem.76.052705.164916.
  • Cook PJ, Ju BG, Telese F, Wang X, Glass CK, Rosenfeld MG. 2009. Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458:591–596. https://doi.org/10.1038/nature07849.
  • Krishnan N, Jeong DG, Jung SK, Ryu SE, Xiao A, Allis CD, Kim SJ, Tonks NK. 2009. Dephosphorylation of the C-terminal tyrosyl residue of the DNA damage-related histone H2A.X is mediated by the protein phosphatase eyes absent. J Biol Chem 284:16066–16070. https://doi.org/10.1074/jbc.C900032200.
  • Okabe Y, Sano T, Nagata S. 2009. Regulation of the innate immune response by threonine-phosphatase of Eyes absent. Nature 460:520–524. https://doi.org/10.1038/nature08138.
  • Ohto H, Kamada S, Tago K, Tominaga SI, Ozaki H, Sato S, Kawakami K. 1999. Cooperation of six and eya in activation of their target genes through nuclear translocation of Eya. Mol Cell Biol 19:6815–6824. https://doi.org/10.1128/MCB.19.10.6815.
  • Li X, Oghi KA, Zhang J, Krones A, Bush KT, Glass CK, Nigam SK, Aggarwal AK, Maas R, Rose DW, Rosenfeld MG. 2003. Eya protein phosphatase activity regulates Six1-Dach-Eya transcriptional effects in mammalian organogenesis. Nature 426:247–254. https://doi.org/10.1038/nature02083.
  • Forsberg EC, Prohaska SS, Katzman S, Heffner GC, Stuart JM, Weissman IL. 2005. Differential expression of novel potential regulators in hematopoietic stem cells. PLoS Genet 1:e28. https://doi.org/10.1371/journal.pgen.0010028.
  • Zhang L, Yang N, Huang J, Buckanovich RJ, Liang S, Barchetti A, Vezzani C, O'Brien-Jenkins A, Wang J, Ward MR, Courreges MC, Fracchioli S, Medina A, Katsaros D, Weber BL, Coukos G. 2005. Transcriptional coactivator Drosophila Eyes Absent Homologue2 is up-regulated in epithelial ovarian cancer and promotes tumor growth. Cancer Res 65:925–932.
  • Farabaugh SM, Micalizzi DS, Jedlicka P, Zhao R, Ford HL. 2012. Eya2 is required to mediate the pro-metastatic functions of Six1 via the induction of TGF-beta signaling, epithelial-mesenchymal transition, and cancer stem cell properties. Oncogene 31:552–562. https://doi.org/10.1038/onc.2011.259.
  • Patrick AN, Cabrera JH, Smith AL, Chen XS, Ford HL, Zhao R. 2013. Structure-function analyses of the human SIX1-EYA2 complex reveal insights into metastasis and BOR syndrome. Nat Struct Mol Biol 20:447–453. https://doi.org/10.1038/nsmb.2505.
  • Metzelder SK, Michel C, von Bonin M, Rehberger M, Hessmann E, Inselmann S, Solovey M, Wang Y, Sohlbach K, Brendel C, Stiewe T, Charles J, Ten Haaf A, Ellenrieder V, Neubauer A, Gattenlohner S, Bornhauser M, Burchert A. 2015. NFATc1 as a therapeutic target in FLT3-ITD-positive AML. Leukemia 29:1470–1477. https://doi.org/10.1038/leu.2015.95.
  • Payton JE, Grieselhuber NR, Chang LW, Murakami M, Geiss GK, Link DC, Nagarajan R, Watson MA, Ley TJ. 2009. High throughput digital quantification of mRNA abundance in primary human acute myeloid leukemia samples. J Clin Invest 119:1714–1726. https://doi.org/10.1172/JCI38248.
  • Xu J, Wong EY, Cheng C, Li J, Sharkar MT, Xu CY, Chen B, Sun J, Jing D, Xu PX. 2014. Eya1 interacts with Six2 and Myc to regulate expansion of the nephron progenitor pool during nephrogenesis. Dev Cell 31:434–447. https://doi.org/10.1016/j.devcel.2014.10.015.
  • Gentles AJ, Plevritis SK, Majeti R, Alizadeh AA. 2010. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA 304:2706–2715. https://doi.org/10.1001/jama.2010.1862.
  • Gal H, Amariglio N, Trakhtenbrot L, Jacob-Hirsh J, Margalit O, Avigdor A, Nagler A, Tavor S, Ein-Dor L, Lapidot T, Domany E, Rechavi G, Givol D. 2006. Gene expression profiles of AML derived stem cells; similarity to hematopoietic stem cells. Leukemia 20:2147–2154. https://doi.org/10.1038/sj.leu.2404401.
  • Ivanova NB, Dimos JT, Schaniel C, Hackney JA, Moore KA, Lemischka IR. 2002. A stem cell molecular signature. Science 298:601–604. https://doi.org/10.1126/science.1073823.
  • Puszyk W, Down T, Grimwade D, Chomienne C, Oakey RJ, Solomon E, Guidez F. 2013. The epigenetic regulator PLZF represses L1 retrotransposition in germ and progenitor cells. EMBO J 32:1941–1952. https://doi.org/10.1038/emboj.2013.118.
  • Stavropoulou V, Kaspar S, Brault L, Sanders MA, Juge S, Morettini S, Tzankov A, Iacovino M, Lau IJ, Milne TA, Royo H, Kyba M, Valk PJ, Peters AH, Schwaller J. 2016. MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome. Cancer Cell 30:43–58. https://doi.org/10.1016/j.ccell.2016.05.011.
  • Spicuglia S, Vincent-Fabert C, Benoukraf T, Tiberi G, Saurin AJ, Zacarias-Cabeza J, Grimwade D, Mills K, Calmels B, Bertucci F, Sieweke M, Ferrier P, Duprez E. 2011. Characterisation of genome-wide PLZF/RARA target genes. PLoS One 6:e24176. https://doi.org/10.1371/journal.pone.0024176.
  • Clark SW, Fee BE, Cleveland JL. 2002. Misexpression of the Eyes Absent family triggers the apoptotic program. J Biol Chem 277:3560–3567. https://doi.org/10.1074/jbc.M108410200.
  • Shaknovich R, Yeyati PL, Ivins S, Melnick A, Lempert C, Waxman S, Zelent A, Licht JD. 1998. The promyelocytic leukemia zinc finger protein affects myeloid cell growth, differentiation, and apoptosis. Mol Cell Biol 18:5533–5545. https://doi.org/10.1128/MCB.18.9.5533.
  • Wagner GP. 2007. The developmental genetics of homology. Nat Rev Genet 8:473–479. https://doi.org/10.1038/nrg2099.
  • Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD, Girtman K, Mathew S, Ma J, Pounds SB, Su X, Pui CH, Relling MV, Evans WE, Shurtleff SA, Downing JR. 2007. Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446:758–764. https://doi.org/10.1038/nature05690.
  • Nebral K, Denk D, Attarbaschi A, Konig M, Mann G, Haas OA, Strehl S. 2009. Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 23:134–143. https://doi.org/10.1038/leu.2008.306.
  • Terskikh AV, Miyamoto T, Chang C, Diatchenko L, Weissman IL. 2003. Gene expression analysis of purified hematopoietic stem cells and committed progenitors. Blood 102:94–101. https://doi.org/10.1182/blood-2002-08-2509.
  • Wang QF, Wu G, Mi S, He F, Wu J, Dong J, Luo RT, Mattison R, Kaberlein JJ, Prabhakar S, Ji H, Thirman MJ. 2011. MLL fusion proteins preferentially regulate a subset of wild-type MLL target genes in the leukemic genome. Blood 117:6895–6905. https://doi.org/10.1182/blood-2010-12-324699.
  • Wilson A, Murphy MJ, Oskarsson T, Kaloulis K, Bettess MD, Oser GM, Pasche AC, Knabenhans C, Macdonald HR, Trumpp A. 2004. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18:2747–2763. https://doi.org/10.1101/gad.313104.
  • Ono R, Kumagai H, Nakajima H, Hishiya A, Taki T, Horikawa K, Takatsu K, Satoh T, Hayashi Y, Kitamura T, Nosaka T. 2009. Mixed-lineage-leukemia (MLL) fusion protein collaborates with Ras to induce acute leukemia through aberrant Hox expression and Raf activation. Leukemia 23:2197–2209. https://doi.org/10.1038/leu.2009.177.
  • Kitamura T, Koshino Y, Shibata F, Oki T, Nakajima H, Nosaka T, Kumagai H. 2003. Retrovirus-mediated gene transfer and expression cloning: powerful tools in functional genomics. Exp Hematol 31:1007–1014. https://doi.org/10.1016/S0301-472X(03)00260-1.
  • Ono R, Nakajima H, Ozaki K, Kumagai H, Kawashima T, Taki T, Kitamura T, Hayashi Y, Nosaka T. 2005. Dimerization of MLL fusion proteins and FLT3 activation synergize to induce multiple-lineage leukemogenesis. J Clin Invest 115:919–929. https://doi.org/10.1172/JCI200522725.
  • Gu S, Jin L, Zhang Y, Huang Y, Zhang F, Valdmanis PN, Kay MA. 2012. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell 151:900–911. https://doi.org/10.1016/j.cell.2012.09.042.
  • Ono R, Ihara M, Nakajima H, Ozaki K, Kataoka-Fujiwara Y, Taki T, Nagata K, Inagaki M, Yoshida N, Kitamura T, Hayashi Y, Kinoshita M, Nosaka T. 2005. Disruption of Sept6, a fusion partner gene of MLL, does not affect ontogeny, leukemogenesis induced by MLL-SEPT6, or phenotype induced by the loss of Sept4. Mol Cell Biol 25:10965–10978. https://doi.org/10.1128/MCB.25.24.10965-10978.2005.
  • Miyata E, Masuya M, Yoshida S, Nakamura S, Kato K, Sugimoto Y, Shibasaki T, Yamamura K, Ohishi K, Nishii K, Ishikawa F, Shiku H, Katayama N. 2008. Hematopoietic origin of hepatic stellate cells in the adult liver. Blood 111:2427–2435. https://doi.org/10.1182/blood-2007-07-101261.
  • Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, Varambally S, Cao X, Tchinda J, Kuefer R, Lee C, Montie JE, Shah RB, Pienta KJ, Rubin MA, Chinnaiyan AM. 2005. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310:644–648. https://doi.org/10.1126/science.1117679.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.