216
Views
7
CrossRef citations to date
0
Altmetric
Research Article

DEAD Box Protein Family Member DDX28 Is a Negative Regulator of Hypoxia-Inducible Factor 2α- and Eukaryotic Initiation Factor 4E2-Directed Hypoxic Translation

, , & ORCID Icon
Article: e00610-19 | Received 26 Nov 2019, Accepted 20 Dec 2019, Published online: 03 Mar 2023

REFERENCES

  • Semenza GL. 2011. Oxygen sensing, homeostasis, and disease. N Engl J Med 365:537–547. https://doi.org/10.1056/NEJMra1011165.
  • Dunwoodie SL. 2009. The role of hypoxia in development of the mammalian embryo. Dev Cell 17:755–773. https://doi.org/10.1016/j.devcel.2009.11.008.
  • Simon MC, Keith B. 2008. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9:285–296. https://doi.org/10.1038/nrm2354.
  • Semenza GL. 2000. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol (1985) 88:1474–1480. https://doi.org/10.1152/jappl.2000.88.4.1474.
  • Withington SL, Scott AN, Saunders DN, Lopes Floro K, Preis JI, Michalicek J, Maclean K, Sparrow DB, Barbera JP, Dunwoodie SL. 2006. Loss of Cited2 affects trophoblast formation and vascularization of the mouse placenta. Dev Biol 294:67–82. https://doi.org/10.1016/j.ydbio.2006.02.025.
  • Amarilio R, Viukov SV, Sharir A, Eshkar-Oren I, Johnson RS, Zelzer E. 2007. HIF1alpha regulation of Sox9 is necessary to maintain differentiation of hypoxic prechondrogenic cells during early skeletogenesis. Development 134:3917–3928. https://doi.org/10.1242/dev.008441.
  • Jogi A, Ora I, Nilsson H, Lindeheim A, Makino Y, Poellinger L, Axelson H, Pahlman S. 2002. Hypoxia alters gene expression in human neuroblastoma cells toward an immature and neural crest-like phenotype. Proc Natl Acad Sci U S A 99:7021–7026. https://doi.org/10.1073/pnas.102660199.
  • Licht AH, Muller-Holtkamp F, Flamme I, Breier G. 2006. Inhibition of hypoxia-inducible factor activity in endothelial cells disrupts embryonic cardiovascular development. Blood 107:584–590. https://doi.org/10.1182/blood-2005-07-3033.
  • Watson ED, Cross JC. 2005. Development of structures and transport functions in the mouse placenta. Physiology (Bethesda) 20:180–193. https://doi.org/10.1152/physiol.00001.2005.
  • Yun Z, Maecker HL, Johnson RS, Giaccia AJ. 2002. Inhibition of PPAR gamma 2 gene expression by the HIF-1-regulated gene DEC1/Stra13: a mechanism for regulation of adipogenesis by hypoxia. Dev Cell 2:331–341. https://doi.org/10.1016/s1534-5807(02)00131-4.
  • Majmundar AJ, Wong WJ, Simon MC. 2010. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294–309. https://doi.org/10.1016/j.molcel.2010.09.022.
  • Semenza GL. 2012. Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 33:207–214. https://doi.org/10.1016/j.tips.2012.01.005.
  • Downes NL, Laham-Karam N, Kaikkonen MU, Ylä-Herttuala S. 2018. Differential but complementary HIF1alpha and HIF2alpha transcriptional regulation. Mol Ther 26:1735–1745. https://doi.org/10.1016/j.ymthe.2018.05.004.
  • Lin Q, Cong X, Yun Z. 2011. Differential hypoxic regulation of hypoxia-inducible factors 1alpha and 2alpha. Mol Cancer Res 9:757–765. https://doi.org/10.1158/1541-7786.MCR-11-0053.
  • Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL. 2000. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157:411–421. https://doi.org/10.1016/s0002-9440(10)64554-3.
  • Uniacke J, Holterman CE, Lachance G, Franovic A, Jacob MD, Fabian MR, Payette J, Holcik M, Pause A, Lee S. 2012. An oxygen-regulated switch in the protein synthesis machinery. Nature 486:126–129. https://doi.org/10.1038/nature11055.
  • Timpano S, Uniacke J. 2016. Human cells cultured under physiological oxygen utilize two cap-binding proteins to recruit distinct mRNAs for translation. J Biol Chem 291:10772–10782. https://doi.org/10.1074/jbc.M116.717363.
  • Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E, Witters LA, Ellisen LW, Kaelin WG, Jr. 2004. Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18:2893–2904. https://doi.org/10.1101/gad.1256804.
  • Connolly E, Braunstein S, Formenti S, Schneider RJ. 2006. Hypoxia inhibits protein synthesis through a 4E-BP1 and elongation factor 2 kinase pathway controlled by mTOR and uncoupled in breast cancer cells. Mol Cell Biol 26:3955–3965. https://doi.org/10.1128/MCB.26.10.3955-3965.2006.
  • DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW. 2008. Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22:239–251. https://doi.org/10.1101/gad.1617608.
  • Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC. 2006. Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21:521–531. https://doi.org/10.1016/j.molcel.2006.01.010.
  • Ho JJD, Wang M, Audas TE, Kwon D, Carlsson SK, Timpano S, Evagelou SL, Brothers S, Gonzalgo ML, Krieger JR, Chen S, Uniacke J, Lee S. 2016. Systemic reprogramming of translation efficiencies on oxygen stimulus. Cell Rep 14:1293–1300. https://doi.org/10.1016/j.celrep.2016.01.036.
  • Morita M, Ler LW, Fabian MR, Siddiqui N, Mullin M, Henderson VC, Alain T, Fonseca BD, Karashchuk G, Bennett CF, Kabuta T, Higashi S, Larsson O, Topisirovic I, Smith RJ, Gingras AC, Sonenberg N. 2012. A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development. Mol Cell Biol 32:3585–3593. https://doi.org/10.1128/MCB.00455-12.
  • Kelly NJ, Varga JFA, Specker EJ, Romeo CM, Coomber BL, Uniacke J. 2018. Hypoxia activates cadherin-22 synthesis via eIF4E2 to drive cancer cell migration, invasion and adhesion. Oncogene 37:651–662. https://doi.org/10.1038/onc.2017.372.
  • Uniacke J, Perera JK, Lachance G, Francisco CB, Lee S. 2014. Cancer cells exploit eIF4E2-directed synthesis of hypoxia response proteins to drive tumor progression. Cancer Res 74:1379–1389. https://doi.org/10.1158/0008-5472.CAN-13-2278.
  • Valgardsdottir R, Brede G, Eide LG, Frengen E, Prydz H. 2001. Cloning and characterization of MDDX28, a putative dead-box helicase with mitochondrial and nuclear localization. J Biol Chem 276:32056–32063. https://doi.org/10.1074/jbc.M011629200.
  • Antonicka H, Shoubridge EA. 2015. Mitochondrial RNA granules are centers for posttranscriptional RNA processing and ribosome biogenesis. Cell Rep 10:920–932. https://doi.org/10.1016/j.celrep.2015.01.030.
  • Tu YT, Barrientos A. 2015. The human mitochondrial DEAD-box protein DDX28 resides in RNA granules and functions in mitoribosome assembly. Cell Rep 10:854–864. https://doi.org/10.1016/j.celrep.2015.01.033.
  • Bousquet PA, Sandvik JA, Arntzen MO, Jeppesen Edin NF, Christoffersen S, Krengel U, Pettersen EO, Thiede B. 2015. Hypoxia strongly affects mitochondrial ribosomal proteins and translocases, as shown by quantitative proteomics of HeLa cells. Int J Proteomics 2015:678527. https://doi.org/10.1155/2015/678527.
  • Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, Park H, Kim SS, Choe W, Kang I, Ha J. 2008. Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 29:713–721. https://doi.org/10.1093/carcin/bgn032.
  • Miyazono Y, Hirashima S, Ishihara N, Kusukawa J, Nakamura KI, Ohta K. 2018. Uncoupled mitochondria quickly shorten along their long axis to form indented spheroids, instead of rings, in a fission-independent manner. Sci Rep 8:350. https://doi.org/10.1038/s41598-017-18582-6.
  • Wu S, Zhou F, Zhang Z, Xing D. 2011. Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J 278:941–954. https://doi.org/10.1111/j.1742-4658.2011.08010.x.
  • McCarron JG, Wilson C, Sandison ME, Olson ML, Girkin JM, Saunter C, Chalmers S. 2013. From structure to function: mitochondrial morphology, motion and shaping in vascular smooth muscle. J Vasc Res 50:357–371. https://doi.org/10.1159/000353883.
  • Rafelski SM. 2013. Mitochondrial network morphology: building an integrative, geometrical view. BMC Biol 11:71. https://doi.org/10.1186/1741-7007-11-71.
  • Rojo AI, Salinas M, Martin D, Perona R, Cuadrado A. 2004. Regulation of Cu/Zn-superoxide dismutase expression via the phosphatidylinositol 3 kinase/Akt pathway and nuclear factor-kappaB. J Neurosci 24:7324–7334. https://doi.org/10.1523/JNEUROSCI.2111-04.2004.
  • Jaiswal AK. 2000. Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic Biol Med 29:254–262. https://doi.org/10.1016/s0891-5849(00)00306-3.
  • Tahmasbpour Marzony E, Ghanei M, Panahi Y. 2016. Oxidative stress and altered expression of peroxiredoxin genes family (PRDXS) and sulfiredoxin-1 (SRXN1) in human lung tissue following exposure to sulfur mustard. Exp Lung Res 42:217–226. https://doi.org/10.1080/01902148.2016.1194501.
  • Leone A, Roca MS, Ciardiello C, Costantini S, Budillon A. 2017. Oxidative stress gene expression profile correlates with cancer patient poor prognosis: identification of crucial pathways might select novel therapeutic approaches. Oxid Med Cell Longev 2017:2597581. https://doi.org/10.1155/2017/2597581.
  • Volpon L, Osborne MJ, Topisirovic I, Siddiqui N, Borden KL. 2006. Cap-free structure of eIF4E suggests a basis for conformational regulation by its ligands. EMBO J 25:5138–5149. https://doi.org/10.1038/sj.emboj.7601380.
  • Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. 2012. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 485:109–113. https://doi.org/10.1038/nature11083.
  • Aprelikova O, Wood M, Tackett S, Chandramouli GV, Barrett JC. 2006. Role of ETS transcription factors in the hypoxia-inducible factor-2 target gene selection. Cancer Res 66:5641–5647. https://doi.org/10.1158/0008-5472.CAN-05-3345.
  • Elvidge GP, Glenny L, Appelhoff RJ, Ratcliffe PJ, Ragoussis J, Gleadle JM. 2006. Concordant regulation of gene expression by hypoxia and 2-oxoglutarate-dependent dioxygenase inhibition: the role of HIF-1alpha, HIF-2alpha, and other pathways. J Biol Chem 281:15215–15226. https://doi.org/10.1074/jbc.M511408200.
  • Hu CJ, Sataur A, Wang L, Chen H, Simon MC. 2007. The N-terminal transactivation domain confers target gene specificity of hypoxia-inducible factors HIF-1alpha and HIF-2alpha. Mol Biol Cell 18:4528–4542. https://doi.org/10.1091/mbc.e06-05-0419.
  • Isono T, Chano T, Yoshida T, Kageyama S, Kawauchi A, Suzaki M, Yuasa T. 2016. Hydroxyl-HIF2-alpha is potential therapeutic target for renal cell carcinomas. Am J Cancer Res 6:2263–2276.
  • Yi T, Papadopoulos E, Hagner PR, Wagner G. 2013. Hypoxia-inducible factor-1alpha (HIF-1alpha) promotes cap-dependent translation of selective mRNAs through up-regulating initiation factor eIF4E1 in breast cancer cells under hypoxia conditions. J Biol Chem 288:18732–18742. https://doi.org/10.1074/jbc.M113.471466.
  • Okumura F, Zou W, Zhang DE. 2007. ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP. Genes Dev 21:255–260. https://doi.org/10.1101/gad.1521607.
  • Melanson G, Timpano S, Uniacke J. 2017. The eIF4E2-directed hypoxic cap-dependent translation machinery reveals novel therapeutic potential for cancer treatment. Oxid Med Cell Longev 2017:6098107. https://doi.org/10.1155/2017/6098107.
  • Timpano S, Melanson G, Evagelou SL, Guild BD, Specker EJ, Uniacke J. 28 December 2016. Analysis of cap-binding proteins in human cells exposed to physiological oxygen conditions. J Vis Exp https://doi.org/10.3791/55112.
  • Kuehn BM. 2010. Genomics illuminates a deadly brain cancer. JAMA 303:925–927. https://doi.org/10.1001/jama.2010.236.
  • Yarden Y, Sliwkowski MX. 2001. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137. https://doi.org/10.1038/35052073.
  • Wallace EM, Rizzi JP, Han G, Wehn PM, Cao Z, Du X, Cheng T, Czerwinski RM, Dixon DD, Goggin BS, Grina JA, Halfmann MM, Maddie MA, Olive SR, Schlachter ST, Tan H, Wang B, Wang K, Xie S, Xu R, Yang H, Josey JA. 2016. A small-molecule antagonist of HIF2alpha is efficacious in preclinical models of renal cell carcinoma. Cancer Res 76:5491–5500. https://doi.org/10.1158/0008-5472.CAN-16-0473.
  • Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, Sanli K, von Feilitzen K, Oksvold P, Lundberg E, Hober S, Nilsson P, Mattsson J, Schwenk JM, Brunnström H, Glimelius B, Sjöblom T, Edqvist P-H, Djureinovic D, Micke P, Lindskog C, Mardinoglu A, Ponten F, Uhlen M, Zhang C, Lee S, Sjöstedt E, Fagerberg L, Bidkhori G, Benfeitas R, Arif M, Liu Z, Edfors F, Sanli K, von Feilitzen K, Oksvold P, Lundberg E, Hober S, Nilsson P, Mattsson J, Schwenk JM, Brunnström H, Glimelius B, Sjöblom T, Edqvist P-H, Djureinovic D, Micke P, Lindskog C, Mardinoglu A, Ponten F. 2017. A pathology atlas of the human cancer transcriptome. Science 357:eaan2507. https://doi.org/10.1126/science.aan2507.
  • Razafinjatovo C, Bihr S, Mischo A, Vogl U, Schmidinger M, Moch H, Schraml P. 2016. Characterization of VHL missense mutations in sporadic clear cell renal cell carcinoma: hotspots, affected binding domains, functional impact on pVHL and therapeutic relevance. BMC Cancer 16:638. https://doi.org/10.1186/s12885-016-2688-0.
  • Yan Q, Bartz S, Mao M, Li L, Kaelin WG, Jr. 2007. The hypoxia-inducible factor 2alpha N-terminal and C-terminal transactivation domains cooperate to promote renal tumorigenesis in vivo. Mol Cell Biol 27:2092–2102. https://doi.org/10.1128/MCB.01514-06.
  • Timpano S, Guild BD, Specker EJ, Melanson G, Medeiros PJ, Sproul SLJ, Uniacke J. 2019. Physioxic human cell culture improves viability, metabolism, and mitochondrial morphology while reducing DNA damage. FASEB J 33:5716–5728. https://doi.org/10.1096/fj.201802279R.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.