192
Views
13
CrossRef citations to date
0
Altmetric
Article

Essential Nonredundant Function of the Catalytic Activity of Histone Deacetylase 2 in Mouse Development

, , , , , & show all
Pages 462-474 | Received 26 Jun 2015, Accepted 16 Nov 2015, Published online: 17 Mar 2023

REFERENCES

  • New M, Olzscha H, La Thangue NB. 2012. HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol 6:637–656. http://dx.doi.org/10.1016/j.molonc.2012.09.003.
  • Moser MA, Hagelkruys A, Seiser C. 2014. Transcription and beyond: the role of mammalian class I lysine deacetylases. Chromosoma 123:67–78. http://dx.doi.org/10.1007/s00412-013-0441-x.
  • Alland L, Muhle R, Hou H, Jr, Potes J, Chin L, Schreiber-Agus N, DePinho RA. 1997. Role for N-CoR and histone deacetylase in Sin3-mediated transcriptional repression. Nature 387:49–55. http://dx.doi.org/10.1038/387049a0.
  • Ballas N, Battaglioli E, Atouf F, Andres ME, Chenoweth J, Anderson ME, Burger C, Moniwa M, Davie JR, Bowers WJ, Federoff HJ, Rose DW, Rosenfeld MG, Brehm P, Mandel G. 2001. Regulation of neuronal traits by a novel transcriptional complex. Neuron 31:353–365. http://dx.doi.org/10.1016/S0896-6273(01)00371-3.
  • Heinzel T, Lavinsky RM, Mullen TM, Soderstrom M, Laherty CD, Torchia J, Yang WM, Brard G, Ngo SD, Davie JR, Seto E, Eisenman RN, Rose DW, Glass CK, Rosenfeld MG. 1997. A complex containing N-CoR, mSin3 and histone deacetylase mediates transcriptional repression. Nature 387:43–48. http://dx.doi.org/10.1038/387043a0.
  • Laherty CD, Yang WM, Sun JM, Davie JR, Seto E, Eisenman RN. 1997. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 89:349–356. http://dx.doi.org/10.1016/S0092-8674(00)80215-9.
  • Zhang Y, Iratni R, Erdjument-Bromage H, Tempst P, Reinberg D. 1997. Histone deacetylases and SAP18, a novel polypeptide, are components of a human Sin3 complex. Cell 89:357–364. http://dx.doi.org/10.1016/S0092-8674(00)80216-0.
  • Dovey OM, Foster CT, Conte N, Edwards SA, Edwards JM, Singh R, Vassiliou G, Bradley A, Cowley SM. 2013. Histone deacetylase (HDAC) 1 and 2 are essential for normal T cell development and genomic stability in mice. Blood 121:1335–1344. http://dx.doi.org/10.1182/blood-2012-07-441949.
  • Hagelkruys A, Lagger S, Krahmer J, Leopoldi A, Artaker M, Pusch O, Zezula J, Weissmann S, Xie Y, Schofer C, Schlederer M, Brosch G, Matthias P, Selfridge J, Lassmann H, Knoblich JA, Seiser C. 2014. A single allele of Hdac2 but not Hdac1 is sufficient for normal mouse brain development in the absence of its paralog. Development 141:604–616. http://dx.doi.org/10.1242/dev.100487.
  • Winter M, Moser MA, Meunier D, Fischer C, Machat G, Mattes K, Lichtenberger BM, Brunmeir R, Weissmann S, Murko C, Humer C, Meischel T, Brosch G, Matthias P, Sibilia M, Seiser C. 2013. Divergent roles of HDAC1 and HDAC2 in the regulation of epidermal development and tumorigenesis. EMBO J 32:3176–3191. http://dx.doi.org/10.1038/emboj.2013.243.
  • Abel T, Zukin RS. 2008. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 8:57–64. http://dx.doi.org/10.1016/j.coph.2007.12.002.
  • Hagelkruys A, Sawicka A, Rennmayr M, Seiser C. 2011. The biology of HDAC in cancer: the nuclear and epigenetic components. Handb Exp Pharmacol 206:13–37. http://dx.doi.org/10.1007/978-3-642-21631-2_2.
  • Kazantsev AG, Thompson LM. 2008. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders. Nat Rev Drug Discov 7:854–868. http://dx.doi.org/10.1038/nrd2681.
  • Langley B, Gensert JM, Beal MF, Ratan RR. 2005. Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 4:41–50. http://dx.doi.org/10.2174/1568007053005091.
  • Lee H, Sengupta N, Villagra A, Rezai-Zadeh N, Seto E. 2006. Histone deacetylase 8 safeguards the human ever-shorter telomeres 1B (hEST1B) protein from ubiquitin-mediated degradation. Mol Cell Biol 26:5259–5269. http://dx.doi.org/10.1128/MCB.01971-05.
  • Sun Z, Feng D, Fang B, Mullican SE, You SH, Lim HW, Everett LJ, Nabel CS, Li Y, Selvakumaran V, Won KJ, Lazar MA. 2013. Deacetylase-independent function of HDAC3 in transcription and metabolism requires nuclear receptor corepressor. Mol Cell 52:769–782. http://dx.doi.org/10.1016/j.molcel.2013.10.022.
  • Khier H, Bartl S, Schuettengruber B, Seiser C. 1999. Cloning and characterization of the mouse histone deacetylase 1 gene: integration of a retrovirus in 129SV mice. Biochim Biophys Acta 1489:365–373. http://dx.doi.org/10.1016/S0167-4781(99)00203-1.
  • Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. http://dx.doi.org/10.1093/bioinformatics/btu638.
  • Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. 2008. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628. http://dx.doi.org/10.1038/nmeth.1226.
  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J. 2004. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:R80. http://dx.doi.org/10.1186/gb-2004-5-10-r80.
  • Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140. http://dx.doi.org/10.1093/bioinformatics/btp616.
  • Hauser C, Schuettengruber B, Bartl S, Lagger G, Seiser C. 2002. Activation of the mouse histone deacetylase 1 gene by cooperative histone phosphorylation and acetylation. Mol Cell Biol 22:7820–7830. http://dx.doi.org/10.1128/MCB.22.22.7820-7830.2002.
  • Taplick J, Kurtev V, Lagger G, Seiser C. 1998. Histone H4 acetylation during interleukin-2 stimulation of mouse T cells. FEBS Lett 436:349–352. http://dx.doi.org/10.1016/S0014-5793(98)01164-8.
  • Hassig CA, Tong JK, Fleischer TC, Owa T, Grable PG, Ayer DE, Schreiber SL. 1998. A role for histone deacetylase activity in HDAC1-mediated transcriptional repression. Proc Natl Acad Sci U S A 95:3519–3524. http://dx.doi.org/10.1073/pnas.95.7.3519.
  • Lagger S, Meunier D, Mikula M, Brunmeir R, Schlederer M, Artaker M, Pusch O, Egger G, Hagelkruys A, Mikulits W, Weitzer G, Muellner EW, Susani M, Kenner L, Seiser C. 2010. Crucial function of histone deacetylase 1 for differentiation of teratomas in mice and humans. EMBO J 29:3992–4007. http://dx.doi.org/10.1038/emboj.2010.264.
  • Montgomery RL, Davis CA, Potthoff MJ, Haberland M, Fielitz J, Qi X, Hill JA, Richardson JA, Olson EN. 2007. Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21:1790–1802. http://dx.doi.org/10.1101/gad.1563807.
  • Yamaguchi T, Cubizolles F, Zhang Y, Reichert N, Kohler H, Seiser C, Matthias P. 2010. Histone deacetylases 1 and 2 act in concert to promote the G1-to-S progression. Genes Dev 24:455–469. http://dx.doi.org/10.1101/gad.552310.
  • Guan JS, Haggarty SJ, Giacometti E, Dannenberg JH, Joseph N, Gao J, Nieland TJ, Zhou Y, Wang X, Mazitschek R, Bradner JE, DePinho RA, Jaenisch R, Tsai LH. 2009. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 459:55–60. http://dx.doi.org/10.1038/nature07925.
  • Lagger G, O'Carroll D, Rembold M, Khier H, Tischler J, Weitzer G, Schuettengruber B, Hauser C, Brunmeir R, Jenuwein T, Seiser C. 2002. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21:2672–2681. http://dx.doi.org/10.1093/emboj/21.11.2672.
  • Reichert N, Choukrallah MA, Matthias P. 2012. Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell Mol Life Sci 69:2173–2187. http://dx.doi.org/10.1007/s00018-012-0921-9.
  • Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA. 2007. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13:324–331. http://dx.doi.org/10.1038/nm1552.
  • Zimmermann S, Kiefer F, Prudenziati M, Spiller C, Hansen J, Floss T, Wurst W, Minucci S, Gottlicher M. 2007. Reduced body size and decreased intestinal tumor rates in HDAC2-mutant mice. Cancer Res 67:9047–9054. http://dx.doi.org/10.1158/0008-5472.CAN-07-0312.
  • Taplick J, Kurtev V, Kroboth K, Posch M, Lechner T, Seiser C. 2001. Homo-oligomerisation and nuclear localisation of mouse histone deacetylase 1. J Mol Biol 308:27–38. http://dx.doi.org/10.1006/jmbi.2001.4569.
  • Chen JL, Lin HH, Kim KJ, Lin A, Ou JH, Ann DK. 2009. PKC delta signaling: a dual role in regulating hypoxic stress-induced autophagy and apoptosis. Autophagy 5:244–246. http://dx.doi.org/10.4161/auto.5.2.7549.
  • Kikkawa U, Matsuzaki H, Yamamoto T. 2002. Protein kinase C delta (PKC delta): activation mechanisms and functions. J Biochem 132:831–839. http://dx.doi.org/10.1093/oxfordjournals.jbchem.a003294.
  • Bhaskara S, Jacques V, Rusche JR, Olson EN, Cairns BR, Chandrasekharan MB. 2013. Histone deacetylases 1 and 2 maintain S-phase chromatin and DNA replication fork progression. Epigenetics Chromatin 6:27. http://dx.doi.org/10.1186/1756-8935-6-27.
  • Jin H, Kanthasamy A, Anantharam V, Rana A, Kanthasamy AG. 2011. Transcriptional regulation of pro-apoptotic protein kinase Cdelta: implications for oxidative stress-induced neuronal cell death. J Biol Chem 286:19840–19859. http://dx.doi.org/10.1074/jbc.M110.203687.
  • Jin H, Kanthasamy A, Harischandra DS, Kondru N, Ghosh A, Panicker N, Anantharam V, Rana A, Kanthasamy AG. 2014. Histone hyperacetylation up-regulates protein kinase Cdelta in dopaminergic neurons to induce cell death: relevance to epigenetic mechanisms of neurodegeneration in Parkinson disease. J Biol Chem 289:34743–34767. http://dx.doi.org/10.1074/jbc.M114.576702.
  • Lahm A, Paolini C, Pallaoro M, Nardi MC, Jones P, Neddermann P, Sambucini S, Bottomley MJ, Lo Surdo P, Carfi A, Koch U, De Francesco R, Steinkuhler C, Gallinari P. 2007. Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci U S A 104:17335–17340. http://dx.doi.org/10.1073/pnas.0706487104.
  • Bu P, Evrard YA, Lozano G, Dent SY. 2007. Loss of Gcn5 acetyltransferase activity leads to neural tube closure defects and exencephaly in mouse embryos. Mol Cell Biol 27:3405–3416. http://dx.doi.org/10.1128/MCB.00066-07.
  • Kelly RD, Cowley SM. 2013. The physiological roles of histone deacetylase (HDAC) 1 and 2: complex co-stars with multiple leading parts. Biochem Soc Trans 41:741–749. http://dx.doi.org/10.1042/BST20130010.
  • Ropero S, Fraga MF, Ballestar E, Hamelin R, Yamamoto H, Boix-Chornet M, Caballero R, Alaminos M, Setien F, Paz MF, Herranz M, Palacios J, Arango D, Orntoft TF, Aaltonen LA, Schwartz S, Jr, Esteller M. 2006. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet 38:566–569. http://dx.doi.org/10.1038/ng1773.
  • Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, Minamino M, Saitoh K, Komata M, Katou Y, Clark D, Cole KE, De Baere E, Decroos C, Di Donato N, Ernst S, Francey LJ, Gyftodimou Y, Hirashima K, Hullings M, Ishikawa Y, Jaulin C, Kaur M, Kiyono T, Lombardi PM, Magnaghi-Jaulin L, Mortier GR, Nozaki N, Petersen MB, Seimiya H, Siu VM, Suzuki Y, Takagaki K, Wilde JJ, Willems PJ, Prigent C, Gillessen-Kaesbach G, Christianson DW, Kaiser FJ, Jackson LG, Hirota T, Krantz ID, Shirahige K. 2012. HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 489:313–317. http://dx.doi.org/10.1038/nature11316.
  • Decroos C, Bowman CM, Moser JA, Christianson KE, Deardorff MA, Christianson DW. 2014. Compromised structure and function of HDAC8 mutants identified in Cornelia de Lange syndrome spectrum disorders. ACS Chem Biol 9:2157–2164. http://dx.doi.org/10.1021/cb5003762.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.