66
Views
26
CrossRef citations to date
0
Altmetric
Research Article

Phosphorylated Nuclear Receptor CAR Forms a Homodimer To Repress Its Constitutive Activity for Ligand Activation

, , , , &
Article: e00649-16 | Received 12 Dec 2016, Accepted 18 Feb 2017, Published online: 17 Mar 2023

REFERENCES

  • Kakizaki S, Yamazaki Y, Takizawa D, Negishi M. 2008. New insights on the xenobiotic-sensing nuclear receptors in liver diseases—CAR and PXR. Curr Drug Metab 9:614–621. https://doi.org/10.2174/138920008785821666.
  • Dong B, Saha PK, Huang W, Chen W, Abu-Elheiga LA, Wakil SJ, Stevens RD, Ilkayeva O, Newgard CB, Chan L, Moore DD. 2009. Activation of nuclear receptor CAR ameliorates diabetes and fatty liver disease. Proc Natl Acad Sci U S A 106:18831–18836. https://doi.org/10.1073/pnas.0909731106.
  • Yamamoto Y, Moore R, Goldsworthy TL, Negishi M, Maronpot RR. 2004. The orphan nuclear receptor constitutive active/androstane receptor is essential for liver tumor promotion by phenobarbital in mice. Cancer Res 64:7197–7200. https://doi.org/10.1158/0008-5472.CAN-04-1459.
  • Huang W, Zhang J, Washington M, Liu J, Parant JM, Lozano G, Moore DD. 2005. Xenobiotic stress induces hepatomegaly and liver tumors via the nuclear receptor constitutive androstane receptor. Mol Endocrinol 19:1646–1653. https://doi.org/10.1210/me.2004-0520.
  • Mutoh S, Osabe M, Inoue K, Moore R, Pedersen L, Perera L, Rebolloso Y, Sueyoshi T, Negishi M. 2009. Dephosphorylation of threonine 38 is required for nuclear translocation and activation of human xenobiotic receptor CAR (NR1I3). J Biol Chem 284:34785–34792. https://doi.org/10.1074/jbc.M109.048108.
  • Mutoh S, Sobhany M, Moore R, Perera L, Pedersen L, Sueyoshi T, Negishi M. 2013. Phenobarbital indirectly activates the constitutive active androstane receptor (CAR) by inhibition of epidermal growth factor receptor signaling. Sci Signal 6:ra31. https://doi.org/10.1126/scisignal.2003705.
  • Osabe M, Negishi M. 2011. Active ERK1/2 protein interacts with the phosphorylated nuclear constitutive active/androstane receptor (CAR; NR1I3), repressing dephosphorylation and sequestering CAR in the cytoplasm. J Biol Chem 286:35763–35769. https://doi.org/10.1074/jbc.M111.284596.
  • Koike C, Moore R, Negishi M. 2007. Extracellular signal-regulated kinase is an endogenous signal retaining the nuclear constitutive active/androstane receptor (CAR) in the cytoplasm of mouse primary hepatocytes. Mol Pharmacol 71:1217–1221. https://doi.org/10.1124/mol.107.034538.
  • Shan L, Vincent J, Brunzelle JS, Dussault I, Lin M, Ianculescu I, Sherman MA, Forman BM, Fernandez EJ. 2004. Structure of the murine constitutive androstane receptor complexed to androstenol: a molecular basis for inverse agonism. Mol Cell 16:907–917.
  • Hashiguchi T, Arakawa S, Takahashi S, Gonzalez FJ, Sueyoshi T, Negishi M. 2016. Phosphorylation of farnesoid X receptor at serine 154 links ligand activation with degradation. Mol Endocrinol 30:1070–1080. https://doi.org/10.1210/me.2016-1105.
  • Ohno M, Kanayama T, Moore R, Ray M, Negishi M. 2014. The roles of co-chaperone CCRP/DNAJC7 in Cyp2b10 gene activation and steatosis development in mouse livers. PLoS One 9:e115663. https://doi.org/10.1371/journal.pone.0115663.
  • Bledsoe RK, Montana VG, Stanley TB, Delves CJ, Apolito CJ, McKee DD, Consler TG, Parks DJ, Stewart EL, Willson TM, Lambert MH, Moore JT, Pearce KH, Xu HE. 2002. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell 110:93–105. https://doi.org/10.1016/S0092-8674(02)00817-6.
  • Suino K, Peng L, Reynolds R, Li Y, Cha JY, Repa JJ, Kliewer SA, Xu HE. 2004. The nuclear xenobiotic receptor CAR: structural determinants of constitutive activation and heterodimerization. Mol Cell 16:893–905.
  • Xu RX, Lambert MH, Wisely BB, Warren EN, Weinert EE, Waitt GM, Williams JD, Collins JL, Moore LB, Willson TM, Moore JT. 2004. A structural basis for constitutive activity in the human CAR/RXRalpha heterodimer. Mol Cell 16:919–928. https://doi.org/10.1016/j.molcel.2004.11.042.
  • Yoshinari K, Kobayashi K, Moore R, Kawamoto T, Negishi M. 2003. Identification of the nuclear receptor CAR:HSP90 complex in mouse liver and recruitment of protein phosphatase 2A in response to phenobarbital. FEBS Lett 548:17–20. https://doi.org/10.1016/S0014-5793(03)00720-8.
  • Yang H, Garzel B, Heyward S, Moeller T, Shapiro P, Wang H. 2014. Metformin represses drug-induced expression of CYP2B6 by modulating the constitutive androstane receptor signaling. Mol Pharmacol 85:249–260. https://doi.org/10.1124/mol.113.089763.
  • Honkakoski P, Zelko I, Sueyoshi T, Negishi M. 1998. The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol Cell Biol 18:5652–5658. https://doi.org/10.1128/MCB.18.10.5652.
  • Sueyoshi T, Kawamoto T, Zelko I, Honkakoski P, Negishi M. 1999. The repressed nuclear receptor CAR responds to phenobarbital in activating the human CYP2B6 gene. J Biol Chem 274:6043–6046. https://doi.org/10.1074/jbc.274.10.6043.
  • Kobayashi K, Sueyoshi T, Inoue K, Moore R, Negishi M. 2003. Cytoplasmic accumulation of the nuclear receptor CAR by a tetratricopeptide repeat protein in HepG2 cells. Mol Pharmacol 64:1069–1075. https://doi.org/10.1124/mol.64.5.1069.
  • Chandra V, Huang P, Potluri N, Wu D, Kim Y, Rastinejad F. 2013. Multidomain integration in the structure of the HNF-4alpha nuclear receptor complex. Nature 495:394–398. https://doi.org/10.1038/nature11966.
  • Shindo S, Moore R, Flake G, Negishi M. 2013. Serine 216 phosphorylation of estrogen receptor alpha in neutrophils: migration and infiltration into the mouse uterus. PLoS One 8:e84462. https://doi.org/10.1371/journal.pone.0084462.
  • Savory JG, Prefontaine GG, Lamprecht C, Liao M, Walther RF, Lefebvre YA, Hache RJ. 2001. Glucocorticoid receptor homodimers and glucocorticoid-mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces. Mol Cell Biol 21:781–793. https://doi.org/10.1128/MCB.21.3.781-793.2001.
  • Dewint P, Gossye V, De Bosscher K, Vanden Berghe W, Van Beneden K, Deforce D, Van Calenbergh S, Muller-Ladner U, Vander Cruyssen B, Verbruggen G, Haegeman G, Elewaut D. 2008. A plant-derived ligand favoring monomeric glucocorticoid receptor conformation with impaired transactivation potential attenuates collagen-induced arthritis. J Immunol 180:2608–2615. https://doi.org/10.4049/jimmunol.180.4.2608.
  • Brzozowski AM, Pike AC, Dauter Z, Hubbard RE, Bonn T, Engstrom O, Ohman L, Greene GL, Gustafsson JA, Carlquist M. 1997. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389:753–758. https://doi.org/10.1038/39645.
  • Shiau AK, Barstad D, Loria PM, Cheng L, Kushner PJ, Agard DA, Greene GL. 1998. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 95:927–937. https://doi.org/10.1016/S0092-8674(00)81717-1.
  • Revelli A, Massobrio M, Tesarik J. 1998. Nongenomic actions of steroid hormones in reproductive tissues. Endocr Rev 19:3–17.
  • Ordonez-Moran P, Munoz A. 2009. Nuclear receptors: genomic and non-genomic effects converge. Cell Cycle 8:1675–1680. https://doi.org/10.4161/cc.8.11.8579.
  • Lowenberg M, Stahn C, Hommes DW, Buttgereit F. 2008. Novel insights into mechanisms of glucocorticoid action and the development of new glucocorticoid receptor ligands. Steroids 73:1025–1029. https://doi.org/10.1016/j.steroids.2007.12.002.
  • Yamamoto Y, Moore R, Flavell RA, Lu B, Negishi M. 2010. Nuclear receptor CAR represses TNFalpha-induced cell death by interacting with the anti-apoptotic GADD45B. PLoS One 5:e10121. https://doi.org/10.1371/journal.pone.0010121.
  • Losel R, Wehling M. 2003. Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4:46–56. https://doi.org/10.1038/nrm1009.
  • Lishko PV, Botchkina IL, Kirichok Y. 2011. Progesterone activates the principal Ca2+ channel of human sperm. Nature 471:387–391. https://doi.org/10.1038/nature09767.
  • Zelko I, Sueyoshi T, Kawamoto T, Moore R, Negishi M. 2001. The peptide near the C terminus regulates receptor CAR nuclear translocation induced by xenochemicals in mouse liver. Mol Cell Biol 21:2838–2846. https://doi.org/10.1128/MCB.21.8.2838-2846.2001.
  • Sugatani J, Kojima H, Ueda A, Kakizaki S, Yoshinari K, Gong QH, Owens IS, Negishi M, Sueyoshi T. 2001. The phenobarbital response enhancer module in the human bilirubin UDP-glucuronosyltransferase UGT1A1 gene and regulation by the nuclear receptor CAR. Hepatology 33:1232–1238. https://doi.org/10.1053/jhep.2001.24172.
  • Kawamoto T, Sueyoshi T, Zelko I, Moore R, Washburn K, Negishi M. 1999. Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol Cell Biol 19:6318–6322. https://doi.org/10.1128/MCB.19.9.6318.
  • Ueda A, Hamadeh HK, Webb HK, Yamamoto Y, Sueyoshi T, Afshari CA, Lehmann JM, Negishi M. 2002. Diverse roles of the nuclear orphan receptor CAR in regulating hepatic genes in response to phenobarbital. Mol Pharmacol 61:1–6. https://doi.org/10.1124/mol.61.1.1.
  • Honkakoski P, Moore R, Gynther J, Negishi M. 1996. Characterization of phenobarbital-inducible mouse Cyp2b10 gene transcription in primary hepatocytes. J Biol Chem 271:9746–9753. https://doi.org/10.1074/jbc.271.16.9746.
  • Hachet-Haas M, Converset N, Marchal O, Matthes H, Gioria S, Galzi JL, Lecat S. 2006. FRET and colocalization analyzer—a method to validate measurements of sensitized emission FRET acquired by confocal microscopy and available as an ImageJ plug-in. Microsc Res Tech 69:941–956. https://doi.org/10.1002/jemt.20376.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.