58
Views
15
CrossRef citations to date
0
Altmetric
Article

Role of Ostm1 Cytosolic Complex with Kinesin 5B in Intracellular Dispersion and Trafficking

, , , , , & show all
Pages 507-521 | Received 30 Jun 2015, Accepted 17 Nov 2015, Published online: 17 Mar 2023

REFERENCES

  • Tolar J, Teitelbaum SL, andOrchard PJ. 2004. Osteopetrosis. N Engl J Med 351:2839–2849. http://dx.doi.org/10.1056/NEJMra040952.
  • Balemans W, Van Wesenbeeck L, Van Hul W. 2005. A clinical and molecular overview of the human ostopetroses. Calcif Tissue Int 77:263–274. http://dx.doi.org/10.1007/s00223-005-0027-6.
  • Sobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. 2013. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9:522–536. http://dx.doi.org/10.1038/nrendo.2013.137.
  • Teitelbaum SL, Ross P. 2003. Genetic regulation of osteoclast development and function. Nat Rev Genet 4:638–649. http://dx.doi.org/10.1038/nrg1122.
  • Zaidi M. 2007. Skeletal remodeling in health and disease. Nat Med 13:791–801. http://dx.doi.org/10.1038/nm1593.
  • Quarello P, Forni M, Barbereis L, Defilippi C, Campagnoli MF, Frattini A, Chalhoub N, Vacher J, Ramenghi U. 2004. Severe malignant osteopetrosis due to a Gl gene mutation. J Bone Miner Res 19:1194–1199. http://dx.doi.org/10.1359/JBMR.040407.
  • Maranda B, Chabot G, Décarie J-C, Pata M, Azeddine B, Moreau A, Vacher J. 2008. Clinical and cellular manifestations of OSTM1 related infantile osteopetrosis. J Bone Miner Res 23:296–300.
  • Chalhoub N, Benachenhou N, Rajapurohitam V, Pata M, Ferron M, Frattini A, Villa A, Vacher J. 2003. Grey-lethal mutation induces severe malignant autosomal recessive osteopetrosis in mouse and human. Nat Med 9:399–406. http://dx.doi.org/10.1038/nm842.
  • Rajapurohitam V, Chalhoub N, Benachenhou N, Neff L, Baron R, Vacher J. 2001. The mouse osteopetrotic grey-lethal mutation induces a defect in osteoclast maturation/function. Bone 28:513–523. http://dx.doi.org/10.1016/S8756-3282(01)00416-1.
  • Pata M, Héraud C, Vacher J. 2008. OSTM1 bone defect reveals an intercellular hematopoietic crosstalk. J Biol Chem 283:30522–30530. http://dx.doi.org/10.1074/jbc.M805242200.
  • Héraud C, Griffiths A, Pandruvada SNM, Kilimann MW, Pata M, Vacher J. 2014. Severe neurodegeneration with impaired autophagy mechanism triggered by Ostm1 deficiency. J Biol Chem 289:13912–13925. http://dx.doi.org/10.1074/jbc.M113.537233.
  • Orlow S. 1995. Melanosomes are specialized members of the lysosomal lineage of organelles. J Investig Dermatol 105:3–7. http://dx.doi.org/10.1111/1523-1747.ep12312291.
  • Fischer T, De Vries L, Meerloo T, Farquhar MG. 2003. Promotion of Gαi3 subunit down-regulation by GIPN, a putative E3 ubiquitin ligase that interacts with RGS-GAIP. Proc Natl Acad Sci U S A 100:8270–8275. http://dx.doi.org/10.1073/pnas.1432965100.
  • Lange P, Wartosch L, Jentsch T, Fuhrmann J. 2006. ClC-7 requires Ostm1 as a beta-subunit to support bone resorption and lysosomal function. Nature 440:220–223. http://dx.doi.org/10.1038/nature04535.
  • Leisle L, Ludwig CF, Wagner FA, Jentsch TJ, Stauber T. 2011. ClC-7 is a slowly voltage-gated 2Cl(−)/1H(+)-exchanger and requires Ostm1 for transport activity. EMBO J 30:2140–2152. http://dx.doi.org/10.1038/emboj.2011.137.
  • Weinert S, Jabs S, Hohensee S, Chan WL, Kornak U, Jentsch TJ. 2014. Transport activity and presence of ClC-7/Ostm1 complex account for different cellular functions. EMBO Rep 15:784–791. http://dx.doi.org/10.15252/embr.201438553.
  • Frattini A, Pangrazio A, Susani L, Sobacchi C, Mirolo M, Abinun M, Andolina M, Flanagan A, Horwitz EM, Mihci E, Notarangelo LD, Ramenghi U, Teti A, Van Hove J, Vujic D, Young T, Albertini A, Orchard P, Vezzoni JP, Villa A. 2003. Chloride channel ClCN7 mutations are responsible for severe recessive, dominant, and Intermediate osteopetrosis. J Bone Miner Res 18:1740–1747. http://dx.doi.org/10.1359/jbmr.2003.18.10.1740.
  • Mazzolari E, Forino C, Razza A, Porta F, Villa A, Notarangelo LD. 2009. A single-center experience in 20 patients with infantile malignant osteopetrosis. Am J Hematol 84:473–479. http://dx.doi.org/10.1002/ajh.21447.
  • Kornak U, Kasper D, Bösl MR, Kaiser E, Schweizer M, Schulz A, Friedrich W, Delling G, Jentsch TJ. 2001. Loss of the CIC-7 chloride channel leads to osteopetrosis in mice and man. Cell 104:205–215. http://dx.doi.org/10.1016/S0092-8674(01)00206-9.
  • Kozak M. 1984. Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo. Nature 308:241–246. http://dx.doi.org/10.1038/308241a0.
  • Benjannet S, Elagoz A, Wickham L, Mamarbachi M, Munzer JS, Basak A, Lazure C, Cromlish JA, Sisodia S, Checler F, Chrétien M, Seidah NG. 2001. Post-translational processing of γ-secretase (β-amyloid-converting enzyme) and its ectodomain shedding. J Biol Chem 276:10879–10887. http://dx.doi.org/10.1074/jbc.M009899200.
  • Schmidt MR, Maritzena T, Kukhtinaa V, Higmanb VA, Doglioc L, Baraka NN, Straussb H, Oschkinatb H, Dottic CG, Hauckea V. 2009. Regulation of endosomal membrane traffic by a Gadkin/AP-1/kinesin KIF5 complex. Proc Acad Sci U S A 106:15344–15349. http://dx.doi.org/10.1073/pnas.0904268106.
  • Zeghouf M, Li J, Butland G, Borkowska A, Canadien V, Richards DP, Beattie BK, Emili A, Greenblatt JF. 2004. Sequence peptide affinity (SPA) system for the identification of mammalian and bacterial protein complexes. J Proteome Res 3:463–468. http://dx.doi.org/10.1021/pr034084x.
  • No D, Yao TP, Evans RM. 1996. Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 93:3346–3351. http://dx.doi.org/10.1073/pnas.93.8.3346.
  • Rigaut G, Shevchenko A, Rutz B, Wilm M, Mann M, Seraphin B. 1999. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030–1032. http://dx.doi.org/10.1038/13732.
  • Jeronimo C, Langelier MF, Zeghouf M, Cojocaru M, Bergeron D, Baali D, Forget D, Mnaimneh S, Davierwala AP, Pootoolal J, Chandy M, Canadien V, Beattle BK, Richards DP, Workman JL, Hughes TR, Greenblatt J, Coulombe B. 2004. RPAP1, a novel human RNA polymerase II-associated protein affinity purified with recombinant wild-type and mutated polymerase subunits. Mol Cell Biol 24:7043–7058. http://dx.doi.org/10.1128/MCB.24.16.7043-7058.2004.
  • Jeronimo C, Forget D, Bouchard A, Li Q, Chua G, Poitras C, Thérien C, Bergeron D, Bourassa S, Greenblatt J, Chabot B, Poirier GG, Hughes TR, Blanchette M, Price DH, Coulombe B. 2007. Systematic analysis of the protein interaction network for the human transcription machinery reveals the identity of the 7SK capping enzyme. Mol Cell 27:262–274. http://dx.doi.org/10.1016/j.molcel.2007.06.027.
  • Krogan NJ, Peng WT, Cagney G, Robinson MD, Haw R, Zhong G, Guo X, Zhang X, Canadien V, Richards DP, Beatlle BK, Lalev A, Zhang W, Davierwala AP, Mnaimneh S, Starostine A, Tikuisis AP, Grigull J, Datta N, Bray JE, Hughes TR, Emili A, Greenblatt J. 2004. High-definition macromolecular composition of yeast RNA-processing complexes. Mol Cell 13:225–239. http://dx.doi.org/10.1016/S1097-2765(04)00003-6.
  • Sénéchal H, Poirier GG, Coulombe B, Laimins LA, Archambault J. 2007. Amino acid substitutions that specifically impair the transcriptional activity of papillomavirus E2 affect binding to the long isoform of Brd4. Virology 358:10–17. http://dx.doi.org/10.1016/j.virol.2006.08.035.
  • Tanaka Y, Kanai Y, Okada Y, Nonaka S, Takeda S, Harada A, Hirokawa N. 1998. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93:1147–1158. http://dx.doi.org/10.1016/S0092-8674(00)81459-2.
  • Lange A, Yutzey KE. 2006. NFATc1 expression in the developing heart valves is responsive to the RANKL pathway and is required for endocardial expression of cathepsin K. Dev Biol 292:407–417. http://dx.doi.org/10.1016/j.ydbio.2006.01.017.
  • Teasdale RD, Jackson MR. 1996. Signal-mediated sorting of membrane proteins between the endoplasmic reticulum and the golgi apparatus. Annu Rev Cell Dev Biol 12:27–54. http://dx.doi.org/10.1146/annurev.cellbio.12.1.27.
  • Jackson MR, Nilsson T, Peterson PA. 1990. Identification of a consensus motif for retention of transmembrane proteins in the endoplasmic reticulum. EMBO J 9:3153–3162.
  • Hirokawa N, Takemura R. 2005. Molecular motors and mechanisms of diretional transport in neurons. Nat Rev Neurosc 6:201–214. http://dx.doi.org/10.1038/nrn1624.
  • Hirokawa N, Noda Y, Tanaka Y, Niwa S. 2009. Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol 10:682–696. http://dx.doi.org/10.1038/nrm2774.
  • Jentsch TJ, Friedrich T, Schriever A, Yamada H. 1999. The CLC chloride channel family. Pflügers Arch 437:783–795.
  • Jäekel S, Görlich D. 1998. Importin beta, transportin, RanBP5 and RanBP7 mediate nuclear import of ribosomal proteins in mammalian cells. EMBO J 17:4491–4502. http://dx.doi.org/10.1093/emboj/17.15.4491.
  • Cojocaru M, Bouchard A, Cloutier P, Cooper JJ, Varzavand K, Price DH, Coulombe B. 2011. Transcription factor IIS cooperates with the E3 ligase UBR5 to ubiquitinate the CDK9 subunit of the positive transcription elongation factor B. J Biol Chem 286:5012–5022. http://dx.doi.org/10.1074/jbc.M110.176628.
  • Jiang W, Wang S, Xiao M, Lin Y, Zhou L, Lei Q, Xiong Y, Guan KL, Zhao S. 2011. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell 43:33–44. http://dx.doi.org/10.1016/j.molcel.2011.04.028.
  • Pak Y, Glowacka WK, Bruce MC, Pham N, Rotin D. 2006. Transport of LAPTM5 to lysosomes requires association with ubiquitin ligase Nedd4, but not LAPTM5 ubiquitination. J Cell Biol 175:631–645. http://dx.doi.org/10.1083/jcb.200603001.
  • Mavlyutov TA, Cai Y, Ferreira PA. 2002. Identification of RanBP2- and kinesin-mediated transport pathways with restricted neuronal and subcellular localization. Traffic 3:630–640. http://dx.doi.org/10.1034/j.1600-0854.2002.30905.x.
  • Semiz S, Park JG, Nicoloro SM, Furcinitti P, Zhang C, Chawla A, Leszyk J, Czech MP. 2003. Conventional kinesin KIF5B mediates insulin-stimulated GLUT4 movements on microtubules. EMBO J 22:2387–2399. http://dx.doi.org/10.1093/emboj/cdg237.
  • Trejo HE, Lecuona E, Grillo D, Szleifer I, Nekrasova OE, Gelfand VI, Sznajder JI. 2010. Role of kinesin light chain-2 of kinesin-1 in the traffic of Na,K-ATPase-containing vesicles in alveolar epithelial cells. FASEB J 24:374–382. http://dx.doi.org/10.1096/fj.09-137802.
  • Cardoso CMP, Groth-Pedersen L, Høyer-Hansen M, Kirkegaard T, Corcelle E, Andersen JS, Jäättelä M, Nylandsted J. 2009. Depletion of kinesin 5B affects lysosomal distribution and stability and induces peri-nuclear accumulation of autophagosomes in cancer cells. PLoS One 4:e4424. http://dx.doi.org/10.1371/journal.pone.0004424.
  • Cho K-I, Cai Y, Yi H, Yeh A, Aslankov A, andFerreira PA. 2007. Association of the kinesin-binding domain of RanBP2 to KIF5B and KIF5C determines mitochondria localization and function. Traffic 8:1722–1735. http://dx.doi.org/10.1111/j.1600-0854.2007.00647.x.
  • Wang X, Schwarz TL. 2009. The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility. Cell 136:163–174. http://dx.doi.org/10.1016/j.cell.2008.11.046.
  • Nabavi N, Urukova Y, Cardelli M, Aubin JE, Harrison RE. 2008. Lysosome dispersion in osteoblasts accommodates enhanced collagen production during differentiation. J Biol Chem 283:19678–19690. http://dx.doi.org/10.1074/jbc.M802517200.
  • Blott EJ, Griffiths GM. 2002. Secretory lysosomes. Nat Rev Mol Cell Biol 3:122–131. http://dx.doi.org/10.1038/nrm732.
  • Luzio JP, Pryor PR, Bright NA. 2007. Lysosomes: fusion and function. Nat Rev Mol Cell Biol 8:622–632. http://dx.doi.org/10.1038/nrm2217.
  • Holt OJ, Gallo F, Griffiths GM. 2006. Regulating secretory lysosomes. J Biochem 140:7–12. http://dx.doi.org/10.1093/jb/mvj126.
  • Coxon FP, Taylor A. 2008. Vesicular trafficking in osteoclasts. Sem Cell Dev Biol 19:424–433. http://dx.doi.org/10.1016/j.semcdb.2008.08.004.
  • Lacombe J, Karsenty G, Ferron M. 2013. Regulation of lysosome biogenesis and functions in osteoclasts. Cell Cycle 12:2744–2752. http://dx.doi.org/10.4161/cc.25825.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.