366
Views
56
CrossRef citations to date
0
Altmetric
Article

Functional and Biochemical Characterization of Human Eukaryotic Translation Initiation Factor 3 in Living Cells

, , , &
Pages 3041-3052 | Received 14 May 2014, Accepted 04 Jun 2014, Published online: 20 Mar 2023

REFERENCES

  • Valášek LS. 2012. ‘Ribozoomin'—translation initiation from the perspective of the ribosome-bound eukaryotic initiation factors (eIFs). Curr. Protein Pept. Sci. 13:305–330. http://dx.doi.org/10.2174/138920312801619385.
  • Pisarev AV, Hellen CUT, Pestova TV. 2007. Recycling of eukaryotic posttermination ribosomal complexes. Cell 131:286–299. http://dx.doi.org/10.1016/j.cell.2007.08.041.
  • Beznosková P, Cuchalová L, Wagner S, Shoemaker CJ, Gunišová S, Von der Haar T, Valášek LS. 2013. Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genet. 9:e1003962. http://dx.doi.org/10.1371/journal.pgen.1003962.
  • Harel-Sharvit L, Eldad N, Haimovich G, Barkai O, Duek L, Choder M. 2010. RNA polymerase II subunits link transcription and mRNA decay to translation. Cell 143:552–563. http://dx.doi.org/10.1016/j.cell.2010.10.033.
  • Bolger TA, Folkmann AW, Tran EJ, Wente SR. 2008. The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation. Cell 134:624–633. http://dx.doi.org/10.1016/j.cell.2008.06.027.
  • Isken O, Kim YK, Hosoda N, Mayeur GL, Hershey JWB, Maquat LE. 2008. Upf1 phosphorylation triggers translational repression during nonsense-mediated mRNA decay. Cell 133:314–327. http://dx.doi.org/10.1016/j.cell.2008.02.030.
  • Sun C, Querol-Audi J, Mortimer SA, Arias-Palomo E, Doudna JA, Nogales E, Cate JH. 2013. Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation. Nucleic Acids Res. 41:7512–7521. http://dx.doi.org/10.1093/nar/gkt510.
  • Jager S, Cimermancic P, Gulbahce N, Johnson JR, McGovern KE, Clarke SC, Shales M, Mercenne G, Pache L, Li K, Hernandez H, Jang GM, Roth SL, Akiva E, Marlett J, Stephens M, D'Orso I, Fernandes J, Fahey M, Mahon C, O'Donoghue AJ, Todorovic A, Morris JH, Maltby DA, Alber T, Cagney G, Bushman FD, Young JA, Chanda SK, Sundquist WI, Kortemme T, Hernandez RD, Craik CS, Burlingame A, Sali A, Frankel AD, Krogan NJ. 2012. Global landscape of HIV-human protein complexes. Nature 481:365–370. http://dx.doi.org/10.1038/nature10719.
  • Spilka R, Ernst C, Mehta AK, Haybaeck J. 2013. Eukaryotic translation initiation factors in cancer development and progression. Cancer Lett. 340:9–21. http://dx.doi.org/10.1016/j.canlet.2013.06.019.
  • Zhou M, Sandercock AM, Fraser CS, Ridlova G, Stephens E, Schenauer MR, Yokoi-Fong T, Barsky D, Leary JA, Hershey JW, Doudna JA, Robinson CV. 2008. Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc. Natl. Acad. Sci. U. S. A. 105:18139–18144. http://dx.doi.org/10.1073/pnas.0801313105.
  • Siridechadilok B, Fraser CS, Hall RJ, Doudna JA, Nogales E. 2005. Structural roles for human translation factor eIF3 in initiation of protein synthesis. Science 310:1513–1515. http://dx.doi.org/10.1126/science.1118977.
  • Masutani M, Sonenberg N, Yokoyama S, Imataka H. 2007. Reconstitution reveals the functional core of mammalian eIF3. EMBO J. 26:3373–3383. http://dx.doi.org/10.1038/sj.emboj.7601765.
  • Pukala TL, Ruotolo BT, Zhou M, Politis A, Stefanescu R, Leary JA, Robinson CV. 2009. Subunit architecture of multiprotein assemblies determined using restraints from gas-phase measurements. Structure 17:1235–1243. http://dx.doi.org/10.1016/j.str.2009.07.013.
  • Querol-Audi J, Sun C, Vogan JM, Smith MD, Gu Y, Cate JH, Nogales E. 2013. Architecture of human translation initiation factor 3. Structure 21:920–928. http://dx.doi.org/10.1016/j.str.2013.04.002.
  • Sun C, Todorovic A, Querol-Audi J, Bai Y, Villa N, Snyder M, Ashchyan J, Lewis CS, Hartland A, Gradia S, Fraser CS, Doudna JA, Nogales E, Cate JHD. 2011. Functional reconstitution of human eukaryotic translation initiation factor 3 (eIF3). Proc. Natl. Acad. Sci. U. S. A. 108:20473–20478. http://dx.doi.org/10.1073/pnas.1116821108.
  • Hashem Y, des Georges A, Dhote V, Langlois R, Liao HY, Grassucci RA, Hellen CU, Pestova TV, Frank J. 2013. Structure of the mammalian ribosomal 43S preinitiation complex bound to the scanning factor DHX29. Cell 153:1108–1119. http://dx.doi.org/10.1016/j.cell.2013.04.036.
  • Ellisdon AM, Stewart M. 2012. Structural biology of the PCI-protein fold. Bioarchitecture 2:118–123. http://dx.doi.org/10.4161/bioa.21131.
  • Valášek L, Nielsen KH, Hinnebusch AG. 2002. Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J. 21:5886–5898. http://dx.doi.org/10.1093/emboj/cdf563.
  • Valášek L, Mathew A, Shin BS, Nielsen KH, Szamecz B, Hinnebusch AG. 2003. The yeast eIF3 subunits TIF32/a and NIP1/c and eIF5 make critical connections with the 40S ribosome in vivo. Genes Dev. 17:786–799. http://dx.doi.org/10.1101/gad.1065403.
  • Kouba T, Danyi I, Gunišová S, Munzarová V, Vlčková V, Cuchalová L, Neueder A, Milkereit P, Valášek LS. 2012. Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit. PLoS One 7:e40464. http://dx.doi.org/10.1371/journal.pone.0040464.
  • Chiu W-L, Wagner S, Herrmannová A, Burela L, Zhang F, Saini AK, Valášek L, Hinnebusch AG. 2010. The C-terminal region of eukaryotic translation initiation factor 3a (eIF3a) promotes mRNA recruitment, scanning, and, together with eIF3j and the eIF3b RNA recognition motif, selection of AUG start codons. Mol. Cell. Biol. 30:4415–4434. http://dx.doi.org/10.1128/MCB.00280-10.
  • Kouba T, Rutkai E, Karasková M, Valášek LS. 2012. The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of the pre-initiation complexes. Nucleic Acids Res. 40:2683–2699. http://dx.doi.org/10.1093/nar/gkr1083.
  • Khoshnevis S, Gunišová S, Vlčková V, Kouba T, Neumann P, Beznosková P, Ficner R, Valášek LS. 2014. Structural integrity of the PCI domain of eIF3a/TIF32 is required for mRNA recruitment to the 43S pre-initiation complexes. Nucleic Acids Res. 42:4123–4139. http://dx.doi.org/10.1093/nar/gkt1369.
  • Dong Z, Qi J, Peng H, Liu J, Zhang JT. 2013. Spectrin domain of eukaryotic initiation factor 3a is the docking site for formation of the a:b:i:g subcomplex. J. Biol. Chem. 288:27951–27959. http://dx.doi.org/10.1074/jbc.M113.483164.
  • Valášek L, Phan L, Schoenfeld LW, Valášková V, Hinnebusch AG. 2001. Related eIF3 subunits TIF32 and HCR1 interact with an RNA recoginition motif in PRT1 required for eIF3 integrity and ribosome binding. EMBO J. 20:891–904. http://dx.doi.org/10.1093/emboj/20.4.891.
  • Villa N, Do A, Hershey JW, Fraser CS. 2013. Human eukaryotic initiation factor 4G (eIF4G) binds to eIF3c, -d, and -e to promote mRNA recruitment to the ribosome. J. Biol. Chem. 288:32932–32940. http://dx.doi.org/10.1074/jbc.M113.517011.
  • Kolupaeva VG, Unbehaun A, Lomakin IB, Hellen CU, Pestova TV. 2005. Binding of eukaryotic initiation factor 3 to ribosomal 40S subunits and its role in ribosomal dissociation and anti-association. RNA 11:470–486. http://dx.doi.org/10.1261/rna.7215305.
  • Fraser CS, Lee JY, Mayeur GL, Bushell M, Doudna JA, Hershey JW. 2004. The j-subunit of human translation initiation factor eIF3 is required for the stable binding of eIF3 and its subcomplexes to 40S ribosomal subunits in vitro. J. Biol. Chem. 279:8946–8956. http://dx.doi.org/10.1074/jbc.M312745200.
  • Miyamoto S, Patel P, Hershey JW. 2005. Changes in ribosomal binding activity of eIF3 correlate with increased translation rates during activation of T lymphocytes. J. Biol. Chem. 280:28251–28264. http://dx.doi.org/10.1074/jbc.M414129200.
  • Fraser CS, Berry KE, Hershey JW, Doudna JA. 2007. 3j is located in the decoding center of the human 40S ribosomal subunit. Mol. Cell 26:811–819. http://dx.doi.org/10.1016/j.molcel.2007.05.019.
  • Valášek L, Hašek J, Trachsel H, Imre EM, Ruis H. 1999. The Saccharomyces cerevisiae HCRI gene encoding a homologue of the p35 subunit of human translation eukaryotic initiation factor 3 (eIF3) is a high copy suppressor of a temperature-sensitive mutation in the Rpg1p subunit of yeast eIF3. J. Biol. Chem. 274:27567–27572. http://dx.doi.org/10.1074/jbc.274.39.27567.
  • ElAntak L, Wagner S, Herrmannová A, Karásková M, Rutkai E, Lukavsky PJ, Valášek L. 2010. The indispensable N-terminal half of eIF3j co-operates with its structurally conserved binding partner eIF3b-RRM and eIF1A in stringent AUG selection. J. Mol. Biol. 396:1097–1116. http://dx.doi.org/10.1016/j.jmb.2009.12.047.
  • Nielsen KH, Valášek L, Sykes C, Jivotovskaya A, Hinnebusch AG. 2006. Interaction of the RNP1 motif in PRT1 with HCR1 promotes 40S binding of eukaryotic initiation factor 3 in yeast. Mol. Cell. Biol. 26:2984–2998. http://dx.doi.org/10.1128/MCB.26.8.2984-2998.2006.
  • Vattem KM, Wek RC. 2004. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 101:11269–11274. http://dx.doi.org/10.1073/pnas.0400541101.
  • Nielsen KH, Valášek L. 2007. In vivo deletion analysis of the architecture of a multi-protein complex of translation initiation factors. Methods Enzymol. 431:15–32. http://dx.doi.org/10.1016/S0076-6879(07)31002-1.
  • Schmitter D, Filkowski J, Sewer A, Pillai RS, Oakeley EJ, Zavolan M, Svoboda P, Filipowicz W. 2006. Effects of Dicer and Argonaute down-regulation on mRNA levels in human HEK293 cells. Nucleic Acids Res. 34:4801–4815. http://dx.doi.org/10.1093/nar/gkl646.
  • Sokabe M, Fraser CS, Hershey JWB. 2011. The human translation initiation multi-factor complex promotes methionyl-tRNAi binding to the 40S ribosomal subunit. Nucleic Acids Res. 40:905–913. http://dx.doi.org/10.1093/nar/gkr772.
  • Zeng L, Wan Y, Li D, Wu J, Shao M, Chen J, Hui L, Ji H, Zhu X. 2013. The m subunit of murine translation initiation factor eIF3 maintains the integrity of the eIF3 complex and is required for embryonic development, homeostasis, and organ size control. J. Biol. Chem. 288:30087–30093. http://dx.doi.org/10.1074/jbc.M113.506147.
  • Valášek L, Szamecz B, Hinnebusch AG, Nielsen KH. 2007. In vivo stabilization of preinitiation complexes by formaldehyde cross-linking. Methods Enzymol. 429:163–183. http://dx.doi.org/10.1016/S0076-6879(07)29008-1.
  • ElAntak L, Tzakos AG, Locker N, Lukavsky PJ. 2007. Structure of eIF3b RNA recognition motif and its interaction with eIF3j: structural insights into the recruitment of eIF3b to the 40 S ribosomal subunit. J. Biol. Chem. 282:8165–8174. http://dx.doi.org/10.1074/jbc.M610860200.
  • Karaskova M, Gunisova S, Herrmannova A, Wagner S, Munzarova V, Valasek LS. 2012. Functional characterization of the role of the N-terminal domain of the c/Nip1 subunit of eukaryotic initiation factor 3 (eIF3) in AUG recognition. J. Biol. Chem. 287:28420–28434. http://dx.doi.org/10.1074/jbc.M112.386656.
  • Zhang L, Pan X, Hershey JW. 2007. Individual overexpression of five subunits of human translation initiation factor eIF3 promotes malignant transformation of immortal fibroblast cells. J. Biol. Chem. 282:5790–5800. http://dx.doi.org/10.1074/jbc.M606284200.
  • Emmanuel R, Weinstein S, Landesman-Milo D, Peer D. 2013. eIF3c: a potential therapeutic target for cancer. Cancer Lett. 336:158–166. http://dx.doi.org/10.1016/j.canlet.2013.04.026.
  • Cai Q, Todorovic A, Andaya A, Gao J, Leary JA, Cate JH. 2010. Distinct regions of human eIF3 are sufficient for binding to the HCV IRES and the 40S ribosomal subunit. J. Mol. Biol. 403:185–196. http://dx.doi.org/10.1016/j.jmb.2010.07.054.
  • Smith MD, Gu Y, Querol-Audi J, Vogan JM, Nitido A, Cate JH. 2013. Human-like eukaryotic translation initiation factor 3 from Neurospora crassa. PLoS One 8:e78715. http://dx.doi.org/10.1371/journal.pone.0078715.
  • Yahalom A, Kim TH, Winter E, Karniol B, von Arnim AG, Chamovitz DA. 2000. Arabidopsis eIF3e (INT-6) associates with both eIF3c and the COP9 signalosome subunit CSN7. J. Biol. Chem. 276:334–340. http://dx.doi.org/10.1074/jbc.M006721200.
  • Masutani M, Machida K, Kobayashi T, Yokoyama S, Imataka H. 2013. Reconstitution of eukaryotic translation initiation factor 3 by co-expression of the subunits in a human cell-derived in vitro protein synthesis system. Protein Expr. Purif. 87:5–10. http://dx.doi.org/10.1016/j.pep.2012.10.001.
  • Zhou D, Pallam LR, Jiang L, Narasimhan J, Staschke KA, Wek RC. 2008. Phosphorylation of eIF2 directs ATF5 translational control in response to diverse stress conditions. J. Biol. Chem. 283:7064–7073. http://dx.doi.org/10.1074/jbc.M708530200.
  • Pisarev AV, Kolupaeva VG, Yusupov MM, Hellen CUT, Pestova TV. 2008. Ribosomal position and contacts of mRNA in eukaryotic translation initiation complexes. EMBO J. 27:1609–1621. http://dx.doi.org/10.1038/emboj.2008.90.
  • Dong Z, Liu LH, Han B, Pincheira R, Zhang J-T. 2004. Role of eIF3 p170 in controlling synthesis of ribonucleotide reductase M2 and cell growth. Oncogene 23:3790–3801. http://dx.doi.org/10.1038/sj.onc.1207465.
  • Valášek L, Nielsen KH, Zhang F, Fekete CA, Hinnebusch AG. 2004. Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol. Cell. Biol. 24:9437–9455. http://dx.doi.org/10.1128/MCB.24.21.9437-9455.2004.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.