64
Views
33
CrossRef citations to date
0
Altmetric
Article

RNA Binding Protein Ptbp2 Is Essential for Male Germ Cell Development

, , , , , & show all
Pages 4030-4042 | Received 06 Jul 2015, Accepted 14 Sep 2015, Published online: 20 Mar 2023

REFERENCES

  • Fu XD, Ares MJ. 2014. Context-dependent control of alternative splicing by RNA-binding proteins. Nat Rev Genet 15:689–701. http://dx.doi.org/10.1038/nrg3778.
  • Kalsotra A, Cooper TA. 2011. Functional consequences of developmentally regulated alternative splicing. Nat Rev Genet 12:715–729. http://dx.doi.org/10.1038/nrg3052.
  • Spellman R, Smith CW. 2006. Novel modes of splicing repression by PTB. Trends Biochem Sci 31:73–76. http://dx.doi.org/10.1016/j.tibs.2005.12.003.
  • Keppetipola N, Sharma S, Li Q, Black DL. 2012. Neuronal regulation of pre-mRNA splicing by polypyrimidine tract binding proteins, PTBP1 and PTBP2. Crit Rev Biochem Mol Biol 47:360–378. http://dx.doi.org/10.3109/10409238.2012.691456.
  • Jangi M, Sharp PA. 2014. Building robust transcriptomes with master splicing factors. Cell 159:487–498. http://dx.doi.org/10.1016/j.cell.2014.09.054.
  • Lillevali K, Kulla A, Ord T. 2001. Comparative expression analysis of the genes encoding polypyrimidine tract binding protein (PTB) and its neural homologue (brPTB) in prenatal and postnatal mouse brain. Mech Dev 101:217–220. http://dx.doi.org/10.1016/S0925-4773(00)00566-9.
  • Polydorides AD, Okano HJ, Yang YY, Stefani G, Darnell RB. 2000. A brain-enriched polypyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc Natl Acad Sci U S A 97:6350–6635. http://dx.doi.org/10.1073/pnas.110128397.
  • Markovtsov V, Nikolic JM, Goldman JA, Turck CW, Chou MY, Black DL. 2000. Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol Cell Biol 20:7463–7479. http://dx.doi.org/10.1128/MCB.20.20.7463-7479.2000.
  • Boutz PL, Stoilov P, Li Q, Lin CH, Chawla G, Ostrow K, Shiue L, Ares MJ, Black DL. 2007. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev 21:1636–1652. http://dx.doi.org/10.1101/gad.1558107.
  • Makeyev EV, Zhang J, Carrasco MA, Maniatis T. 2007. The microRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27:435–448. http://dx.doi.org/10.1016/j.molcel.2007.07.015.
  • Spellman R, Llorian M, Smith CW. 2007. Crossregulation and functional redundancy between the splicing regulator PTB and its paralogs nPTB and ROD1. Mol Cell 27:420–434. http://dx.doi.org/10.1016/j.molcel.2007.06.016.
  • Hamid FM, Makeyev EV. 2014. Regulation of mRNA abundance by polypyrimidine tract-binding protein-controlled alternate 5′ splice site choice. PLoS Genet 10:e1004771. http://dx.doi.org/10.1371/journal.pgen.1004771.
  • Licatalosi DD, Yano M, Fak JJ, Mele A, Grabinski SE, Zhang C, Darnell RB. 2012. Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain. Genes Dev 26:1626–1642. http://dx.doi.org/10.1101/gad.191338.112.
  • Li Q, Zheng S, Han A, Lin CH, Stoilov P, Fu XD, Black DL. 2014. The splicing regulator PTBP2 controls a program of embryonic splicing required for neuronal maturation. eLife 3:e01201. http://dx.doi.org/10.7554/eLife.01201.
  • Yang QE, Oatley JM. 2014. Spermatogonial stem cell functions in physiological and pathological conditions. Curr Top Dev Biol 107:235–267. http://dx.doi.org/10.1016/B978-0-12-416022-4.00009-3.
  • Oakberg EF. 1956. A description of spermiogenesis in the mouse and its use in analysis of the cycle of the seminiferous epithelium and germ cell renewal. Am J Anat 99:391–413. http://dx.doi.org/10.1002/aja.1000990303.
  • Fawcett DW. 1975. The mammalian spermatozoon. Dev Biol 44:394–436. http://dx.doi.org/10.1016/0012-1606(75)90411-X.
  • Griswold MD. 1998. The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol 9:411–416. http://dx.doi.org/10.1006/scdb.1998.0203.
  • Ramskold D, Wang ET, Burge CB, Sandberg R. 2009. An abundance of ubiquitously expressed genes revealed by tissue transcriptome sequence data. PLoS Comput Biol 5:e1000598. http://dx.doi.org/10.1371/journal.pcbi.1000598.
  • Soumillon M, Necsulea A, Weier M, Brawand D, Zhang X, Gu H, Barthes P, Kokkinaki M, Nef S, Gnirke A, Dym M, de Massy B, Mikkelsen TS, Kaessmann H. 2013. Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep 3:2179–2190. http://dx.doi.org/10.1016/j.celrep.2013.05.031.
  • Kleene KC. 2013. Connecting cis-elements and trans-factors with mechanisms of developmental regulation of mRNA translation in meiotic and haploid mammalian spermatogenic cells. Reproduction 146:R1–R19. http://dx.doi.org/10.1530/REP-12-0362.
  • Schmid R, Grellscheid SN, Ehrmann I, Dalgliesh C, Danilenko M, Paronetto MP, Pedrotti S, Grellscheid D, Dixon RJ, Sette C, Eperon IC, Elliott DJ. 2013. The splicing landscape is globally reprogrammed during male meiosis. Nucleic Acids Res 41:10170–10184. http://dx.doi.org/10.1093/nar/gkt811.
  • Elliott DJ, Oghene K, Makarov G, Makarova O, Hargreave TB, Chandley AC, Eperon IC, Cooke HJ. 1998. Dynamic changes in the subnuclear organisation of pre-mRNA splicing proteins and RBM during human germ cell development. J Cell Sci 111:1255–1265.
  • Xu M, Hecht NB. 2007. Polypyrimidine tract binding protein 2 stabilizes phosphoglycerate kinase 2 mRNA in murine male germ cells by binding to its 3′UTR. Biol Reprod 76:1025–1033. http://dx.doi.org/10.1095/biolreprod.107.060079.
  • Xu M, McCarrey JR, Hecht NB. 2008. A cytoplasmic variant of the KH-type splicing regulatory protein serves as a decay-promoting factor for phosphoglycerate kinase 2 mRNA in murine male germ cells. Nucleic Acids Res 36:7157–7167. http://dx.doi.org/10.1093/nar/gkn800.
  • Lassalle B, Bastos H, Louis JP, Riou L, Testart J, Dutrillaux B, Fouchet P, Allemand I. 2004. ‘Side population’ cells in adult mouse testis express Bcrp1 gene and are enriched in spermatogonia and germinal stem cells. Development 131:479–487.
  • Bastos H, Lassalle B, Chicheportiche A, Riou L, Testart J, Allemand I, Fouchet P. 2005. Flow cytometric characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis. Cytometry A 65:40–49.
  • Getun IV, Wu ZK, Khalil AM, Bois PR. 2010. Nucleosome occupancy landscape and dynamics at mouse recombination hotspots. EMBO Rep 11:555–560. http://dx.doi.org/10.1038/embor.2010.79.
  • Lassalle B, Ziyyat A, Testart J, Finaz C, Lefevre A. 1999. Flow cytometric method to isolate round spermatids from mouse testis. Hum Reprod 14:388–394. http://dx.doi.org/10.1093/humrep/14.2.388.
  • Takubo K, Ohmura M, Azuma M, Nagamatsu G, Yamada W, Arai F, Hirao A, Suda T. 2008. Stem cell defects in ATM-deficient undifferentiated spermatogonia through DNA damage-induced cell-cycle arrest. Cell Stem Cell 2:170–182. http://dx.doi.org/10.1016/j.stem.2007.10.023.
  • Grisanti L, Falciatori I, Grasso M, Dovere L, Fera S, Muciaccia B, Fuso A, Berno V, Boitani C, Stefanini M, Vicini E. 2009. Identification of spermatogonial stem cell subsets by morphological analysis and prospective isolation. Stem Cells 27:3043–3052. http://dx.doi.org/10.1002/stem.206.
  • Getun IV, Torres B, Bois PR. 2011. Flow cytometry purification of mouse meiotic cells. J Vis Exp 2011(50):2602. http://dx.doi.org/10.3791/2602.
  • Smith L. 2011. Good planning and serendipity: exploiting the Cre/Lox system in the testis. Reproduction 141:151–161. http://dx.doi.org/10.1530/REP-10-0404.
  • Sadate-Ngatchou PI, Payne CJ, Dearth AT, Braun RE. 2008. Cre recombinase activity specific to postnatal, premeiotic male germ cells in transgenic mice. Genesis 46:738–742. http://dx.doi.org/10.1002/dvg.20437.
  • Hobbs RM, Fagoonee S, Papa A, Webster K, Altruda F, Nishinakamura R, Chai L, Pandolfi PP. 2012. Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell 10:284–298. http://dx.doi.org/10.1016/j.stem.2012.02.004.
  • Bellve AR, Cavicchia JC, Millette CF, O'Brien DA, Bhatnagar YM, Dym M. 1977. Spermatogenic cells of the prepuberal mouse. Isolation and morphological characterization. J Cell Biol 74:68–85.
  • Obholz KL, Akopyan A, Waymire KG, MacGregor GR. 2006. FNDC3A is required for adhesion between spermatids and Sertoli cells. Dev Biol 298:498–513. http://dx.doi.org/10.1016/j.ydbio.2006.06.054.
  • Faridha A, Faisal K, Akbarsha MA. 2007. Aflatoxin treatment brings about generation of multinucleate giant spermatids (symplasts) through opening of cytoplasmic bridges: light and transmission electron microscopic study in Swiss mouse. Reprod Toxicol 24:403–408. http://dx.doi.org/10.1016/j.reprotox.2007.04.071.
  • Eddy EM. 2002. Male germ cell gene expression. Recent Prog Horm Res 57:103–128. http://dx.doi.org/10.1210/rp.57.1.103.
  • Ahmed EA, de Rooij DG. 2009. Staging of mouse seminiferous tubule cross-sections. Methods Mol Biol 558:263–277. http://dx.doi.org/10.1007/978-1-60761-103-5_16.
  • Berruti G, Paiardi C. 2011. Acrosome biogenesis: revisiting old questions to yield new insights. Spermatogenesis 1:95–98. http://dx.doi.org/10.4161/spmg.1.2.16820.
  • Petersen TW, Ibrahim SF, Diercks AH, van den Engh G. 2004. Chromatic shifts in the fluorescence emitted by murine thymocytes stained with Hoechst 33342. Cytometry A 60:173–181.
  • Watson JV, Nakeff A, Chambers SH, Smith PJ. 1985. Flow cytometric fluorescence emission spectrum analysis of Hoechst-33342-stained DNA in chicken thymocytes. Cytometry 6:310–315. http://dx.doi.org/10.1002/cyto.990060406.
  • Smith PJ, Nakeff A, Watson JV. 1985. Flow-cytometric detection of changes in the fluorescence emission spectrum of a vital DNA-specific dye in human tumour cells. Exp Cell Res 159:37–46. http://dx.doi.org/10.1016/S0014-4827(85)80035-5.
  • Vasileva A, Tiedau D, Firooznia A, Muller-Reichert T, Jessberger R. 2009. Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr Biol 19:630–639. http://dx.doi.org/10.1016/j.cub.2009.02.047.
  • De Gasperi R, Rocher AB, Sosa MA, Wearne SL, Perez GM, Friedrich VLJ, Hof PR, Elder GA. 2008. The IRG mouse: a two-color fluorescent reporter for assessing Cre-mediated recombination and imaging complex cellular relationships in situ. Genesis 46:308–317. http://dx.doi.org/10.1002/dvg.20400.
  • Gaysinskaya V, Soh IY, van der Heijden GW, Bortvin A. 2014. Optimized flow cytometry isolation of murine spermatocytes. Cytometry A 85:556–565. http://dx.doi.org/10.1002/cyto.a.22463.
  • Bao J, Ma HY, Schuster A, Lin YM, Yan W. 2013. Incomplete cre-mediated excision leads to phenotypic differences between Stra8-iCre; Mov10l1(lox/lox) and Stra8-iCre; Mov10l1(lox/Delta) mice. Genesis 51:481–490. http://dx.doi.org/10.1002/dvg.22389.
  • McCarrey JR, Berg WM, Paragioudakis SJ, Zhang PL, Dilworth DD, Arnold BL, Rossi JJ. 1992. Differential transcription of Pgk genes during spermatogenesis in the mouse. Dev Biol 154:160–168. http://dx.doi.org/10.1016/0012-1606(92)90056-M.
  • Licatalosi DD, Darnell RB. 2010. RNA processing and its regulation: global insights into biological networks. Nat Rev Genet 11:75–87. http://dx.doi.org/10.1038/nrg2673.
  • Ellis JD, Barrios-Rodiles M, Colak R, Irimia M, Kim T, Calarco JA, Wang X, Pan Q, O'Hanlon D, Kim PM, Wrana JL, Blencowe BJ. 2012. Tissue-specific alternative splicing remodels protein-protein interaction networks. Mol Cell 46:884–892. http://dx.doi.org/10.1016/j.molcel.2012.05.037.
  • Buljan M, Chalancon G, Eustermann S, Wagner GP, Fuxreiter M, Bateman A, Babu MM. 2012. Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Mol Cell 46:871–883. http://dx.doi.org/10.1016/j.molcel.2012.05.039.
  • Chen WS, Xu PZ, Gottlob K, Chen ML, Sokol K, Shiyanova T, Roninson I, Weng W, Suzuki R, Tobe K, Kadowaki T, Hay N. 2001. Growth retardation and increased apoptosis in mice with homozygous disruption of the Akt1 gene. Genes Dev 15:2203–2208. http://dx.doi.org/10.1101/gad.913901.
  • MacGregor GR, Russell LD, Van Beek ME, Hanten GR, Kovac MJ, Kozak CA, Meistrich ML, Overbeek PA. 1990. Symplastic spermatids (sys): a recessive insertional mutation in mice causing a defect in spermatogenesis. Proc Natl Acad Sci U S A 87:5016–5020. http://dx.doi.org/10.1073/pnas.87.13.5016.
  • van der Weyden L, Arends MJ, Chausiaux OE, Ellis PJ, Lange UC, Surani MA, Affara N, Murakami Y, Adams DJ, Bradley A. 2006. Loss of TSLC1 causes male infertility due to a defect at the spermatid stage of spermatogenesis. Mol Cell Biol 26:3595–3609. http://dx.doi.org/10.1128/MCB.26.9.3595-3609.2006.
  • Yamada D, Yoshida M, Williams YN, Fukami T, Kikuchi S, Masuda M, Maruyama T, Ohta T, Nakae D, Maekawa A, Kitamura T, Murakami Y. 2006. Disruption of spermatogenic cell adhesion and male infertility in mice lacking TSLC1/IGSF4, an immunoglobulin superfamily cell adhesion molecule. Mol Cell Biol 26:3610–3624. http://dx.doi.org/10.1128/MCB.26.9.3610-3624.2006.
  • Bi J, Li Y, Sun F, Saalbach A, Klein C, Miller DJ, Hess R, Nowak RA. 2013. Basigin null mutant male mice are sterile and exhibit impaired interactions between germ cells and Sertoli cells. Dev Biol 380:145–156. http://dx.doi.org/10.1016/j.ydbio.2013.05.023.
  • Batista F, Lu L, Williams SA, Stanley P. 2012. Complex N-glycans are essential, but core 1 and 2 mucin O-glycans, O-fucose glycans, and NOTCH1 are dispensable, for mammalian spermatogenesis. Biol Reprod 86:179. http://dx.doi.org/10.1095/biolreprod.111.098103.
  • Yuan W, Leisner TM, McFadden AW, Clark S, Hiller S, Maeda N, O'Brien DA, Parise LV. 2006. CIB1 is essential for mouse spermatogenesis. Mol Cell Biol 26:8507–8514. http://dx.doi.org/10.1128/MCB.01488-06.
  • Hellsten E, Bernard DJ, Owens JW, Eckhaus M, Suchy SF, Nussbaum RL. 2002. Sertoli cell vacuolization and abnormal germ cell adhesion in mice deficient in an inositol polyphosphate 5-phosphatase. Biol Reprod 66:1522–1530. http://dx.doi.org/10.1095/biolreprod66.5.1522.
  • Kyronlahti A, Euler R, Bielinska M, Schoeller EL, Moley KH, Toppari J, Heikinheimo M, Wilson DB. 2011. GATA4 regulates Sertoli cell function and fertility in adult male mice. Mol Cell Endocrinol 333:85–95. http://dx.doi.org/10.1016/j.mce.2010.12.019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.