105
Views
214
CrossRef citations to date
0
Altmetric
Article

L-Sox5 and Sox6 Drive Expression of the Aggrecan Gene in Cartilage by Securing Binding of Sox9 to a Far-Upstream Enhancer

&
Pages 4999-5013 | Received 28 Apr 2008, Accepted 30 May 2008, Published online: 27 Mar 2023

REFERENCES

  • Akiyama, H. 20 March 2008. Control of chondrogenesis by the transcription factor Sox9. Mod. Rheumatol. 18:213–219.
  • Akiyama, H., M. C. Chaboissier, J. E. Martin, A. Schedl, and B. de Crombrugghe. 2002. The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev. 16:2813–2828.
  • Akiyama, H., J. P. Lyons, Y. Mori-Akiyama, X. Yang, R. Zhang, Z. Zhang, J. M. Deng, M. M. Taketo, T. Nakamura, R. R. Behringer, P. D. McCrea, and B. de Crombrugghe. 2004. Interactions between Sox9 and beta-catenin control chondrocyte differentiation. Genes Dev. 18:1072–1087.
  • Bell, D. M., K. K. Leung, S. C. Wheatley, L. J. Ng, S. Zhou, K. W. Ling, M. H. Sham, P. Koopman, P. P. Tam, and K. S. Cheah. 1997. SOX9 directly regulates the type-II collagen gene. Nat. Genet. 16:174–178.
  • Bi, W., J. M. Deng, Z. Zhang, R. R. Behringer, and B. de Crombrugghe. 1999. Sox9 is required for cartilage formation. Nat. Genet. 22:85–89.
  • Bridgewater, L. C., V. Lefebvre, and B. de Crombrugghe. 1998. Chondrocyte-specific enhancer elements in the Col11a2 gene resemble the Col2a1 tissue-specific enhancer. J. Biol. Chem. 273:14998–15006.
  • Bridgewater, L. C., M. D. Walker, G. C. Miller, T. A. Ellison, L. D. Holsinger, J. L. Potter, T. L. Jackson, R. K. Chen, V. L. Winkel, Z. Zhang, S. McKinney, and B. de Crombrugghe. 2003. Adjacent DNA sequences modulate Sox9 transcriptional activation at paired Sox sites in three chondrocyte-specific enhancer elements. Nucleic Acids Res. 31:1541–1553.
  • Denny, P., S. Swift, F. Connor, and A. Ashworth. 1992. An SRY-related gene expressed during spermatogenesis in the mouse encodes a sequence-specific DNA-binding protein. EMBO J. 11:3705–3712.
  • Doege, K., L. B. Hall, W. McKinnon, L. Chen, D. T. Stephens, and K. A. Garrison. 2002. A remote upstream element regulates tissue-specific expression of the rat aggrecan gene. J. Biol. Chem. 277:13989–13997.
  • Doege, K. J., K. Garrison, S. N. Coulter, and Y. Yamada. 1994. The structure of the rat aggrecan gene and preliminary characterization of its promoter. J. Biol. Chem. 269:29232–29240.
  • Dumitriu, B., P. Dy, P. Smits, and V. Lefebvre. 2006. Generation of mice harboring a Sox6 conditional null allele. Genesis 44:219–224.
  • Dy, P., A. Penzo-Méndez, H. Wang, C. E. Pedraza, W. B. Macklin, and V. Lefebvre. 2008. The three SoxC proteins—Sox4, Sox11, and Sox12—exhibit overlapping expressing patterns and molecular properties. Nucleic Acids Res. 36:3101–3117.
  • Dy, P., Y. Han, and V. Lefebvre. 2008. Generation of mice harboring a Sox5 conditional null allele. Genesis 46:294–299.
  • Eyre, D. R. 2004. Collagens and cartilage matrix homeostasis. Clin. Orthop. Relat. Res. 427:118–122.
  • Genzer, M. A., and L. C. Bridgewater. 2007. A Col9a1 enhancer element activated by two interdependent SOX9 dimers. Nucleic Acids Res. 35:1178–1186.
  • Gleghorn, L., R. Ramesar, P. Beighton, and G. Wallis. 2005. A mutation in the variable repeat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe, premature osteoarthritis. Am. J. Hum. Genet. 77:484–490.
  • Goldring, M. B., and S. R. Goldring. 2007. Osteoarthritis. J. Cell. Physiol. 213:626–634.
  • Hogan, B., R. Beddington, F. Costantini, and E. Lacy. 1994. Manipulating the mouse embryo, p. 373-375. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Horton, W. E., Jr., M. Lethbridge-Cejku, M. C. Hochberg, R. Balakir, P. Precht, C. C. Plato, J. D. Tobin, L. Meek, and K. Doege. 1998. An association between an aggrecan polymorphic allele and bilateral hand osteoarthritis in elderly white men: data from the Baltimore Longitudinal Study of Aging (BLSA). Osteoarthritis Cartilage 6:245–251.
  • Ikeda, T., S. Kamekura, A. Mabuchi, I. Kou, S. Seki, T. Takato, K. Nakamura, H. Kawaguchi, S. Ikegawa, and U. I. Chung. 2004. The combination of SOX5, SOX6, and SOX9 (the SOX trio) provides signals sufficient for induction of permanent cartilage. Arthritis Rheum. 50:3561–3573.
  • Kimata, K., H. J. Barrach, K. S. Brown, and J. P. Pennypacker. 1981. Absence of proteoglycan core protein in cartilage from the cmd/cmd (cartilage matrix deficiency) mouse. J. Biol. Chem. 256:6961–6968.
  • Kou, I., and S. Ikegawa. 2004. SOX9-dependent and -independent transcriptional regulation of human cartilage link protein. J. Biol. Chem. 279:50942–50948.
  • Krebsbach, P. H., K. Nakata, S. M. Bernier, O. Hatano, T. Miyashita, C. S. Rhodes, and Y. Yamada. 1996. Identification of a minimum enhancer sequence for the type II collagen gene reveals several core sequence motifs in common with the link protein gene. J. Biol. Chem. 271:4298–4303.
  • Lefebvre, V., B. Dumitriu, A. Penzo-Mendez, Y. Han, and B. Pallavi. 2007. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int. J. Biochem. Cell Biol. 39:2195–2214.
  • Lefebvre, V., S. Garofalo, G. Zhou, M. Metsäranta, E. Vuorio, and B. De Crombrugghe. 1994. Characterization of primary cultures of chondrocytes from type II collagen/beta-galactosidase transgenic mice. Matrix Biol. 14:329–335.
  • Lefebvre, V., W. Huang, V. R. Harley, P. N. Goodfellow, and B. de Crombrugghe. 1997. SOX9 is a potent activator of the chondrocyte-specific enhancer of the pro-alpha 1(II) collagen gene. Mol. Cell. Biol. 17:2336–2346.
  • Lefebvre, V., P. Li, and B. de Crombrugghe. 1998. A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are co-expressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J. 17:5718–5733.
  • Lefebvre, V., and P. Smits. 2005. Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res. Part C Embryo Today Rev. 75:200–212.
  • Lefebvre, V., G. Zhou, K. Mukhopadhyay, C. N. Smith, Z. Zhang, H. Eberspaecher, X. Zhou, S. Sinha, S. N. Maity, and B. de Crombrugghe. 1996. An 18-base-pair sequence in the mouse proα1(II) collagen gene is sufficient for expression in cartilage and binds nuclear proteins that are selectively expressed in chondrocytes. Mol. Cell Biol. 16:4512–4523.
  • Li, H., and N. B. Schwartz. 1995. Gene structure of chick cartilage chondroitin sulfate proteoglycan (aggrecan) core protein. J. Mol. Evol. 41:878–885.
  • Liu, C. J., Y. Zhang, K. Xu, D. Parsons, D. Alfonso, and P. E. Di Cesare. 2007. Transcriptional activation of cartilage oligomeric matrix protein by Sox9, Sox5, and Sox6 transcription factors and CBP/p300 coactivators. Front. Biosci. 12:3899–3910.
  • Mertin, S., S. G. McDowall, and V. R. Harley. 1999. The DNA-binding specificity of SOX9 and other SOX proteins. Nucleic Acids Res. 27:1359–1364.
  • Mukhopadhyay, K., V. Lefebvre, G. Zhou, S. Garofalo, J. H. Kimura, and B. de Crombrugghe. 1995. Use of a new rat chondrosarcoma cell line to delineate a 119-bp chondrocyte-specific enhancer element and to define active promoter segments in the mouse pro-alpha 1(II) collagen gene. J. Biol. Chem. 270:27711–27729.
  • Nakamura, E., M.-T. Nguyen, and S. Mackem. 2006. Kinetics of tamoxifen-regulated Cre activity in mice using a cartilage-specific CreER™ to assay temporal activity windows along the proximo-distal limb skeleton. Dev. Dyn. 235:2603–2612.
  • Ng, L.-J., S. Wheatley, G. E. O. Muscat, J. Conway-Campbell, J. Bowles, E. Wright, D. M. Bell, P. P. L. Tam, K. S. E. Cheah, and P. Koopman. 1997. SOX9 binds DNA, activates transcription, and coexpressed with type II collagen during chondrogenesis in the mouse. Dev. Biol. 183:108–121.
  • Ovchinnikov, D. A., J. M. Deng, G. Ogunrinu, and R. R. Behringer. 2000. Col2a1-directed expression of Cre recombinase in differentiating chondrocytes in transgenic mice. Genesis 26:145–146.
  • Rentsendorj, O., A. Nagy, I. Sinkó, A. Daraba, E. Barta, and I. Kiss. 2005. Highly conserved proximal promoter element harbouring paired Sox9-binding sites contributes to the tissue- and developmental stage-specific activity of the matrilin-1 gene. Biochem. J. 389:705–716.
  • Rimoin, D. L., D. Cohn, D. Krakow, W. Wilcox, R. S. Lachman, and Y. Alanay. 2007. The skeletal dysplasias: clinical-molecular correlations. Ann. N. Y. Acad. Sci. 1117:302–309.
  • Rittenhouse, E., L. C. Dunn, J. Cookingham, C. Calo, M. Spiegelman, G. B. Dooher, and D. Bennett. 1978. Cartilage matrix deficiency (cmd): a new autosomal recessive lethal mutation in the mouse. J. Embryol. Exp. Morphol. 43:71–84.
  • Roughley, P. 2006. The structure and function of cartilage proteoglycans. Eur. Cells Mater. 3012:92–101.
  • Roughley, P., D. Martens, J. Rantakokko, M. Alini, F. Mwale, and J. Antoniou. 2006. The involvement of aggrecan polymorphism in degeneration of human intervertebral disc and articular cartilage. Eur. Cells Mater. 11:1–7.
  • Sakai, K., L. Hiripi, V. Glumoff, O. Brandau, R. Eerola, E. Vuorio, Z. Bosze, R. Fassler, and A. Aszodi. 2001. Stage- and tissue-specific expression of a Col2a1-Cre fusion gene in transgenic mice. Matrix Biol. 19:761–767.
  • Salminen, H., E. Vuorio, and A. M. Säämänen. 2001. Expression of Sox9 and type IIA procollagen during attempted repair of articular cartilage damage in a transgenic mouse model of osteoarthritis. Arthritis Rheum. 44:947–955.
  • Sekiya, I., K. Tsuji, P. Koopman, H. Watanabe, Y. Yamada, K. Shinomiya, A. Nifuji, and M. Noda. 2000. SOX9 enhances aggrecan gene promoter/enhancer activity and is up-regulated by retinoic acid in a cartilage-derived cell line, TC6. J. Biol. Chem. 275:10738–10744.
  • Smits, P., P. Li, J. Mandel, Z. Zhang, J. M. Deng, R. R. Behringer, B. de Crombrugghe, and V. Lefebvre. 2001. The transcription factors L-Sox5 and Sox6 are essential for cartilage formation. Dev. Cell 1:277–290.
  • Smits, P., S. Mitra, and V. Lefebvre. 2004. Sox5 and Sox6 are needed to develop and maintain source, columnar and hypertrophic chondrocytes in the cartilage growth plate. J. Cell Biol. 164:747–758.
  • Valhmu, W. B., G. D. Palmer, J. Dobson, S. G. Fischer, and A. Ratcliffe. 1998. Regulatory activities of the 5′- and 3′-untranslated regions and promoter of the human aggrecan gene. J. Biol. Chem. 273:6196–6202.
  • Valhmu, W. B., G. D. Palmer, P. A. Rivers, S. Ebara, J. F. Cheng, S. Fischer, and A. Ratcliffe. 1995. Structure of the human aggrecan gene: exon-intron organization and association with the protein domains. Biochem. J. 309:535–542.
  • Watanabe, H., L. Gao, S. Sugiyama, K. Doege, K. Kimata, and Y. Yamada. 1995. Mouse aggrecan, a large cartilage proteoglycan: protein sequence, gene structure and promoter sequence. Biochem. J. 308:433–440.
  • Watanabe, H., K. Kimata, S. Line, D. Strong, L. Y. Gao, C. A. Kozak, and Y. Yamada. 1994. Mouse cartilage matrix deficiency (cmd) caused by a 7 bp deletion in the aggrecan gene. Nat. Genet. 7:154–157.
  • Watanabe, H., K. Nakata, K. Kimata, I. Nakanishi, and Y. Yamada. 1997. Dwarfism and age-associated spinal degeneration of heterozygote cmd mice defective in aggrecan. Proc. Natl. Acad. Sci. USA 94:6943–6947.
  • Xie, W. F., X. Zhang, S. Sakano, V. Lefebvre, and L. J. Sandell. 1999. Trans-activation of the mouse cartilage-derived retinoic acid-sensitive protein gene by Sox9. J. Bone Miner. Res. 14:757–763.
  • Zhao, Q., H. Eberspaecher, V. Lefebvre, and B. de Crombrugghe. 1997. Parallel expression of Sox9 and Col2a1 in cells undergoing chondrogenesis. Dev. Dyn. 209:377–386.
  • Zhou, G., G. Garofalo, K. Mukhopadhyay, V. Lefebvre, C. N. Smith, H. Eberspaecher, and B. de Crombrugghe. 1995. A 182 bp fragment of the mouse pro-alpha 1(II) collagen gene is sufficient to direct chondrocyte expression in transgenic mice. J. Cell Sci. 108:3677–3684.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.