55
Views
27
CrossRef citations to date
0
Altmetric
Article

Loss of PTPN12 Stimulates Progression of ErbB2-Dependent Breast Cancer by Enhancing Cell Survival, Migration, and Epithelial-to-Mesenchymal Transition

, , , , , , & show all
Pages 4069-4082 | Received 28 Jul 2015, Accepted 17 Sep 2015, Published online: 20 Mar 2023

REFERENCES

  • Tonks NK. 2006. Protein tyrosine phosphatases: from genes, to function, to disease. Nat Rev Mol Cell Biol 7:833–846.
  • Pao LI, Badour K, Siminovitch KA, Neel BG. 2007. Nonreceptor protein-tyrosine phosphatases in immune cell signaling. Annu Rev Immunol 25:473–523. http://dx.doi.org/10.1146/annurev.immunol.23.021704.115647.
  • Julien SG, Dube N, Hardy S, Tremblay ML. 2011. Inside the human cancer tyrosine phosphatome. Nat Rev Cancer 11:35–49. http://dx.doi.org/10.1038/nrc2980.
  • Veillette A, Rhee I, Souza CM, Davidson D. 2009. PEST family phosphatases in immunity, autoimmunity, and autoinflammatory disorders. Immunol Rev 228:312–324. http://dx.doi.org/10.1111/j.1600-065X.2008.00747.x.
  • Rhee I, Davidson D, Souza CM, Vacher J, Veillette A. 2013. Macrophage fusion is controlled by the cytoplasmic protein tyrosine phosphatase PTP-PEST/PTPN12. Mol Cell Biol 33:2458–2469. http://dx.doi.org/10.1128/MCB.00197-13.
  • Souza CM, Davidson D, Rhee I, Gratton JP, Davis EC, Veillette A. 2012. The phosphatase PTP-PEST/PTPN12 regulates endothelial cell migration and adhesion, but not permeability, and controls vascular development and embryonic viability. J Biol Chem 287:43180–43190. http://dx.doi.org/10.1074/jbc.M112.387456.
  • Davidson D, Shi X, Zhong MC, Rhee I, Veillette A. 2010. The phosphatase PTP-PEST promotes secondary T cell responses by dephosphorylating the protein tyrosine kinase Pyk2. Immunity 33:167–180. http://dx.doi.org/10.1016/j.immuni.2010.08.001.
  • Rhee I, Zhong MC, Reizis B, Cheong C, Veillette A. 2014. Control of dendritic cell migration, T cell-dependent immunity, and autoimmunity by protein tyrosine phosphatase PTPN12 expressed in dendritic cells. Mol Cell Biol 34:888–899. http://dx.doi.org/10.1128/MCB.01369-13.
  • Sirois J, Cote JF, Charest A, Uetani N, Bourdeau A, Duncan SA, Daniels E, Tremblay ML. 2006. Essential function of PTP-PEST during mouse embryonic vascularization, mesenchyme formation, neurogenesis and early liver development. Mech Dev 123:869–880. http://dx.doi.org/10.1016/j.mod.2006.08.011.
  • Cote JF, Charest A, Wagner J, Tremblay ML. 1998. Combination of gene targeting and substrate trapping to identify substrates of protein tyrosine phosphatases using PTP-PEST as a model. Biochemistry 37:13128–13137. http://dx.doi.org/10.1021/bi981259l.
  • Angers-Loustau A, Cote JF, Charest A, Dowbenko D, Spencer S, Lasky LA, Tremblay ML. 1999. Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts. J Cell Biol 144:1019–1031. http://dx.doi.org/10.1083/jcb.144.5.1019.
  • Charest A, Wagner J, Jacob S, McGlade CJ, Tremblay ML. 1996. Phosphotyrosine-independent binding of SHC to the NPLH sequence of murine protein-tyrosine phosphatase-PEST. Evidence for extended phosphotyrosine binding/phosphotyrosine interaction domain recognition specificity. J Biol Chem 271:8424–8429.
  • Davidson D, Veillette A. 2001. PTP-PEST, a scaffold protein tyrosine phosphatase, negatively regulates lymphocyte activation by targeting a unique set of substrates. EMBO J 20:3414–3426. http://dx.doi.org/10.1093/emboj/20.13.3414.
  • Sun T, Aceto N, Meerbrey KL, Kessler JD, Zhou C, Migliaccio I, Nguyen DX, Pavlova NN, Botero M, Huang J, Bernardi RJ, Schmitt E, Hu G, Li MZ, Dephoure N, Gygi SP, Rao M, Creighton CJ, Hilsenbeck SG, Shaw CA, Muzny D, Gibbs RA, Wheeler DA, Osborne CK, Schiff R, Bentires-Alj M, Elledge SJ, Westbrook TF. 2011. Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the PTPN12 phosphatase. Cell 144:703–718. http://dx.doi.org/10.1016/j.cell.2011.02.003.
  • Zheng Y, Zhang C, Croucher DR, Soliman MA, St-Denis N, Pasculescu A, Taylor L, Tate SA, Hardy WR, Colwill K, Dai AY, Bagshaw R, Dennis JW, Gingras AC, Daly RJ, Pawson T. 2013. Temporal regulation of EGF signalling networks by the scaffold protein Shc1. Nature 499:166–171. http://dx.doi.org/10.1038/nature12308.
  • Xunyi Y, Zhentao Y, Dandan J, Funian L. 2012. Clinicopathological significance of PTPN12 expression in human breast cancer. Braz J Med Biol Res 45:1334–1340. http://dx.doi.org/10.1590/S0100-879X2012007500163.
  • Wu MQ, Hu P, Gao J, Wei WD, Xiao XS, Tang HL, Li X, Ge QD, Jia WH, Liu RB, Xie XM. 2013. Low expression of tyrosine-protein phosphatase nonreceptor type 12 is associated with lymph node metastasis and poor prognosis in operable triple-negative breast cancer. Asian Pac J Cancer Prev 14:287–292. http://dx.doi.org/10.7314/APJCP.2013.14.1.287.
  • Luo RZ, Cai PQ, Li M, Fu J, Zhang ZY, Chen JW, Cao Y, Yun JP, Xie D, Cai MY. 2014. Decreased expression of PTPN12 correlates with tumor recurrence and poor survival of patients with hepatocellular carcinoma. PLoS One 9:e85592. http://dx.doi.org/10.1371/journal.pone.0085592.
  • Su Z, Tian H, Song HQ, Zhang R, Deng AM, Liu HW. 2013. PTPN12 inhibits oral squamous epithelial carcinoma cell proliferation and invasion and can be used as a prognostic marker. Med Oncol 30:618. http://dx.doi.org/10.1007/s12032-013-0618-4.
  • Cao X, Chen YZ, Luo RZ, Zhang L, Zhang SL, Zeng J, Jiang YC, Han YJ, Wen ZS. 2015. Tyrosine-protein phosphatase non-receptor type 12 expression is a good prognostic factor in resectable non-small cell lung cancer. Oncotarget 10:11704–11713.
  • Zhang XK, Xu M, Chen JW, Zhou F, Ling YH, Zhu CM, Yun JP, Cai MY, Luo RZ. 2015. The prognostic significance of tyrosine-protein phosphatase nonreceptor type 12 expression in nasopharyngeal carcinoma. Tumour Biol 36:5201–5208. http://dx.doi.org/10.1007/s13277-015-3176-x.
  • Ursini-Siegel J, Hardy WR, Zuo D, Lam SH, Sanguin-Gendreau V, Cardiff RD, Pawson T, Muller WJ. 2008. ShcA signalling is essential for tumour progression in mouse models of human breast cancer. EMBO J 27:910–920. http://dx.doi.org/10.1038/emboj.2008.22.
  • Brantley-Sieders DM, Zhuang G, Hicks D, Fang WB, Hwang Y, Cates JM, Coffman K, Jackson D, Bruckheimer E, Muraoka-Cook RS, Chen J. 2008. The receptor tyrosine kinase EphA2 promotes mammary adenocarcinoma tumorigenesis and metastatic progression in mice by amplifying ErbB2 signaling. J Clin Invest 118:64–78. http://dx.doi.org/10.1172/JCI33154.
  • Perez-Quintero LA, Roncagalli R, Guo H, Latour S, Davidson D, Veillette A. 2014. EAT-2, a SAP-like adaptor, controls NK cell activation through phospholipase Cgamma, Ca++, and Erk, leading to granule polarization. J Exp Med 211:727–742. http://dx.doi.org/10.1084/jem.20132038.
  • Veillette A, Bookman MA, Horak EM, Bolen JB. 1988. The CD4 and CD8 T cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55:301–308. http://dx.doi.org/10.1016/0092-8674(88)90053-0.
  • Buckbinder L, Crawford DT, Qi H, Ke HZ, Olson LM, Long KR, Bonnette PC, Baumann AP, Hambor JE, WAGrasser 3rd, Pan LC, Owen TA, Luzzio MJ, Hulford CA, Gebhard DF, Paralkar VM, Simmons HA, Kath JC, Roberts WG, Smock SL, Guzman-Perez A, Brown TA, Li M. 2007. Proline-rich tyrosine kinase 2 regulates osteoprogenitor cells and bone formation, and offers an anabolic treatment approach for osteoporosis. Proc Natl Acad Sci U S A 104:10619–10624. http://dx.doi.org/10.1073/pnas.0701421104.
  • Schade B, Rao T, Dourdin N, Lesurf R, Hallett M, Cardiff RD, Muller WJ. 2009. PTEN deficiency in a luminal ErbB-2 mouse model results in dramatic acceleration of mammary tumorigenesis and metastasis. J Biol Chem 284:19018–19026. http://dx.doi.org/10.1074/jbc.M109.018937.
  • Marcotte R, Smith HW, Sanguin-Gendreau V, McDonough RV, Muller WJ. 2012. Mammary epithelial-specific disruption of c-Src impairs cell cycle progression and tumorigenesis. Proc Natl Acad Sci U S A 109:2808–2813. http://dx.doi.org/10.1073/pnas.1018861108.
  • Taddei ML, Giannoni E, Fiaschi T, Chiarugi P. 2012. Anoikis: an emerging hallmark in health and diseases. J Pathol 226:380–393. http://dx.doi.org/10.1002/path.3000.
  • Schaller MD. 2010. Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci 123:1007–1013. http://dx.doi.org/10.1242/jcs.045112.
  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, Fluge O, Pergamenschikov A, Williams C, Zhu SX, Lonning PE, Borresen-Dale AL, Brown PO, Botstein D. 2000. Molecular portraits of human breast tumours. Nature 406:747–752. http://dx.doi.org/10.1038/35021093.
  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Lonning PE, Borresen-Dale AL. 2001. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874. http://dx.doi.org/10.1073/pnas.191367098.
  • Sarrio D, Rodriguez-Pinilla SM, Hardisson D, Cano A, Moreno-Bueno G, Palacios J. 2008. Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype. Cancer Res 68:989–997. http://dx.doi.org/10.1158/0008-5472.CAN-07-2017.
  • Lamouille S, Xu J, Derynck R. 2014. Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol 15:178–196. http://dx.doi.org/10.1038/nrm3758.
  • Wallez Y, Mace PD, Pasquale EB, Riedl SJ. 2012. NSP-CAS protein complexes: emerging signaling modules in cancer. Genes Cancer 3:382–393. http://dx.doi.org/10.1177/1947601912460050.
  • Bisaro B, Montani M, Konstantinidou G, Marchini C, Pietrella L, Iezzi M, Galie M, Orso F, Camporeale A, Colombo SM, Di Stefano P, Tornillo G, Camacho-Leal MP, Turco E, Taverna D, Cabodi S, Amici A, Defilippi P. 2012. p130Cas/Cyclooxygenase-2 axis in the control of mesenchymal plasticity of breast cancer cells. Breast Cancer Res 14:R137. http://dx.doi.org/10.1186/bcr3342.
  • Tornillo G, Defilippi P, Cabodi S. 2014. Cas proteins: dodgy scaffolding in breast cancer. Breast Cancer Res 16:443. http://dx.doi.org/10.1186/s13058-014-0443-5.
  • Harris IS, Blaser H, Moreno J, Treloar AE, Gorrini C, Sasaki M, Mason JM, Knobbe CB, Rufini A, Halle M, Elia AJ, Wakeham A, Tremblay ML, Melino G, Done S, Mak TW. 2014. PTPN12 promotes resistance to oxidative stress and supports tumorigenesis by regulating FOXO signaling. Oncogene 33:1047–1054. http://dx.doi.org/10.1038/onc.2013.24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.