83
Views
68
CrossRef citations to date
0
Altmetric
Article

NSun2 Promotes Cell Growth via Elevating Cyclin-Dependent Kinase 1 Translation

, , , , , , , , , & show all
Pages 4043-4052 | Received 29 Jul 2015, Accepted 14 Sep 2015, Published online: 20 Mar 2023

REFERENCES

  • Malumbres M, Barbacid M. 2005. Mammalian cyclin-dependent kinases. Trends Biochem Sci 30:630–641. http://dx.doi.org/10.1016/j.tibs.2005.09.005.
  • Malumbres M, Barbacid M. 2009. Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer 9:153–166. http://dx.doi.org/10.1038/nrc2602.
  • Fisher D, Krasinska L, Coudreuse D, Novák B. 2012. Phosphorylation network dynamics in the control of cell cycle transitions. J Cell Sci 125(Pt 20):4703–4711. http://dx.doi.org/10.1242/jcs.106351.
  • Shimada M, Niida H, Zineldeen DH, Tagami H, Tanaka M, Saito H, Nakanishi M. 2008. Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 132:221–232. http://dx.doi.org/10.1016/j.cell.2007.12.013.
  • Marais A, Ji Z, Child ES, Krause E, Mann DJ, Sharrocks AD. 2010. Cell cycle-dependent regulation of the forkhead transcription factor FOXK2 by CDK·cyclin complexes. J Biol Chem 285:35728–35739. http://dx.doi.org/10.1074/jbc.M110.154005.
  • Yuan Z, Becker EB, Merlo P, Yamada T, DiBacco S, Konishi Y, Schaefer EM, Bonni A. 2008. Activation of FOXO1 by Cdk1 in cycling cells and postmitotic neurons. Science 319:1665–1668. http://dx.doi.org/10.1126/science.1152337.
  • Reis T, Edgar BA. 2004. Negative regulation of dE2F1 by cyclin-dependent kinases controls cell cycle timing. Cell 117:253–264. http://dx.doi.org/10.1016/S0092-8674(04)00247-8.
  • Le Breton M, Cormier P, Bellé R, Mulner-Lorillon O, Morales J. 2005. Translational control during mitosis. Biochimie 87:805–811. http://dx.doi.org/10.1016/j.biochi.2005.04.014.
  • Chen S, Bohrer LR, Rai AN, Pan Y, Gan L, Zhou X, Bagchi A, Simon JA, Huang H. 2010. Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2. Nat Cell Biol 12:1108–1114. http://dx.doi.org/10.1038/ncb2116.
  • Li S, Makovets S, Matsuguchi T, Blethrow JD, Shokat KM, Blackburn EH. 2009. Cdk1-dependent phosphorylation of Cdc13 coordinates telomere elongation during cell-cycle progression. Cell 136:50–61. http://dx.doi.org/10.1016/j.cell.2008.11.027.
  • Takizawa CG, Morgan DO. 2000. Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol 12:658–665. http://dx.doi.org/10.1016/S0955-0674(00)00149-6.
  • Larochelle S, Merrick KA, Terret ME, Wohlbold L, Barboza NM, Zhang C, Shokat KM, Jallepalli PV, Fisher RP. 2007. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol Cell 25:839–850. http://dx.doi.org/10.1016/j.molcel.2007.02.003.
  • Lolli G, Johnson LN. 2005. CAK—cyclin-dependent activating kinase: a key kinase in cell cycle control and a target for drugs? Cell Cycle 4:572–577.
  • Ferrari S. 2006. Protein kinases controlling the onset of mitosis. Cell Mol Life Sci 63:781–795. http://dx.doi.org/10.1007/s00018-005-5515-3.
  • Timofeev O, Cizmecioglu O, Settele F, Kempf T, Hoffmann I. 2010. Cdc25 phosphatases are required for timely assembly of CDK1-cyclin B at the G2/M transition. J Biol Chem 285:16978–16990. http://dx.doi.org/10.1074/jbc.M109.096552.
  • Coulonval K, Kooken H, Roger PP. 2011. Coupling of T161 and T14 phosphorylations protects cyclin B-CDK1 from premature activation. Mol Biol Cell 22:3971–3985. http://dx.doi.org/10.1091/mbc.E11-02-0136.
  • Harvey SL, Charlet A, Haas W, Gygi SP, Kellogg DR. 2005. Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell 122:407–420. http://dx.doi.org/10.1016/j.cell.2005.05.029.
  • Jin Z, Homola EM, Goldbach P, Choi Y, Brill JA, Campbell SD. 2005. Drosophila Myt1 is a Cdk1 inhibitory kinase that regulates multiple aspects of cell cycle behavior during gametogenesis. Development 132:4075–4085. http://dx.doi.org/10.1242/dev.01965.
  • Krasinska L, Domingo-Sananes MR, Kapuy O, Parisis N, Harker B, Moorhead G, Rossignol M, Novák B, Fisher D. 2011. Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions. Mol Cell 44:437–450. http://dx.doi.org/10.1016/j.molcel.2011.10.007.
  • Nebreda AR. 2006. CDK activation by non-cyclin proteins. Curr Opin Cell Biol 18:192–198. http://dx.doi.org/10.1016/j.ceb.2006.01.001.
  • Kao CY, Tanimoto A, Arima N, Sasaguri Y, Padmanabhan R. 1999. Transactivation of the human cdc2 promoter by adenovirus E1A. E1A induces the expression and assembly of a heteromeric complex consisting of the CCAAT box binding factor, CBF/NF-Y, and a 110-kDa DNA-binding protein. J Biol Chem 274:23043–23051.
  • Badie C, Itzhaki JE, Sullivan MJ, Carpenter AJ, Porter AC. 2000. Repression of CDK1 and other genes with CDE and CHR promoter elements during DNA damage-induced G(2)/M arrest in human cells. Mol Cell Biol 20:2358–2366. http://dx.doi.org/10.1128/MCB.20.7.2358-2366.2000.
  • Marash L, Liberman N, Henis-Korenblit S, Sivan G, Reem E, Elroy-Stein O, Kimchi A. 2008. DAP5 promotes cap-independent translation of Bcl-2 and CDK1 to facilitate cell survival during mitosis. Mol Cell 30:447–459. http://dx.doi.org/10.1016/j.molcel.2008.03.018.
  • Liberman N, Marash L, Kimchi A. 2009. The translation initiation factor DAP5 is a regulator of cell survival during mitosis. Cell Cycle 8:204–209. http://dx.doi.org/10.4161/cc.8.2.7384.
  • Chien WW, Domenech C, Catallo R, Kaddar T, Magaud JP, Salles G, Ffrench M. 2011. Cyclin-dependent kinase 1 expression is inhibited by p16(INK4a) at the post-transcriptional level through the microRNA pathway. Oncogene 30:1880–1891. http://dx.doi.org/10.1038/onc.2010.570.
  • Chen S, Chen X, Xiu YL, Sun KX, Zhao Y. 2015. MicroRNA-490-3P targets CDK1 and inhibits ovarian epithelial carcinoma tumorigenesis and progression. Cancer Lett 362:122–130. http://dx.doi.org/10.1016/j.canlet.2015.03.029.
  • Zhang Y, Huang W, Ran Y, Xiong Y, Zhong Z, Fan X, Wang Z, Ye Q. 23 May 2015, posting date. miR-582-5p inhibits proliferation of hepatocellular carcinoma by targeting CDK1 and AKT3. Tumour Biol http://dx.doi.org/10.1007/s13277-015-3582-0.
  • Frye M, Watt FM. 2006. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr Biol 16:971–981. http://dx.doi.org/10.1016/j.cub.2006.04.027.
  • Sakita-Suto S, Kanda A, Suzuki F, Sato S, Takata T, Tatsuka M. 2007. Aurora-B regulates RNA methyltransferase NSUN2. Mol Biol Cell 18:1107–1117. http://dx.doi.org/10.1091/mbc.E06-11-1021.
  • Tuorto F, Liebers R, Musch T, Schaefer M, Hofmann S, Kellner S, Frye M, Helm M, Stoecklin G, Lyko F. 2012. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat Struct Mol Biol 19:900–905. http://dx.doi.org/10.1038/nsmb.2357.
  • Ma L, Chang N, Guo S, Zhang Z, Wang W, Tong T. 2008. CSIG regulates PTEN translation in replicative senescence. Mol Cell Biol 28:6290–6301. http://dx.doi.org/10.1128/MCB.00142-08.
  • Zhang X, Liu Z, Yi J, Tang H, Xing J, Yu M, Tong T, Shang Y, Gorospe M, Wang W. 2012. NSun2 stabilizes p16INK4 mRNA by methylating the 3′-untranslated region of p16. Nat Commun 3:712. http://dx.doi.org/10.1038/ncomms1692.
  • Abdelmohsen K, Srikantan S, Kuwano Y, Gorospe M. 2008. miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci U S A 105:20297–20302. http://dx.doi.org/10.1073/pnas.0809376106.
  • Yuan S, Tang H, Xing J, Fan X, Cai X, Li Q, Han P, Luo Y, Zhang Z, Jiang B, Dou Y, Gorospe M, Wang W. 2014. Methylation by NSun2 represses the levels and function of miR-125b. Mol Cell Biol 34:3630–3641. http://dx.doi.org/10.1128/MCB.00243-14.
  • Di Fiore PP, Segatto O, Taylor WG, Aaronson SA, Pierce JH. 1990. EGF receptor and erbB-2 tyrosine kinase domains confer cell specificity for mitogenic signaling. Science 248:79–83. http://dx.doi.org/10.1126/science.2181668.
  • DeGregori J, Leone G, Miron A, Jakoi L, Nevins JR. 1997. Distinct roles for E2F proteins in cell growth control and apoptosis. Proc Natl Acad Sci U S A 94:7245–7250. http://dx.doi.org/10.1073/pnas.94.14.7245.
  • Narayan P, Rottman FM. 1988. An in vitro system for accurate methylation of internal adenosine residues in messenger RNA. Science 242:1159–1162. http://dx.doi.org/10.1126/science.3187541.
  • Carroll SM, Narayan P, Rottman FM. 1990. N6-methyladenosine residues in an intron-specific region of prolactin pre-mRNA. Mol Cell Biol 10:4456–4465.
  • Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. 2012. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206. http://dx.doi.org/10.1038/nature11112.
  • Okamoto M, Hirata S, Sato S, Koga S, Fujii M, Qi G, Ogawa I, Takata T, Shimamoto F, Tatsuka M. 2012. Frequent increased gene copy number and high protein expression of tRNA (cytosine-5-)-methyltransferase (NSUN2) in human cancers. DNA Cell Biol 31:660–671. http://dx.doi.org/10.1089/dna.2011.1446.
  • Blanco S, Kurowski A, Nichols J, Watt FM, Benitah SA, Frye M. 2011. The RNA-methyltransferase Misu NSun2 poises epidermal stem cells to differentiate. PLoS Genet 7:e1002403. http://dx.doi.org/10.1371/journal.pgen.1002403.
  • Hussain S, Tuorto F, Menon S, Blanco S, Cox C, Flores JV, Watt S, Kudo NR, Lyko F, Frye M. 2013. The mouse cytosine-5 RNA methyltransferase NSun2 is a component of the chromatoid body and required for testis differentiation. Mol Cell Biol 33:1561–1570. http://dx.doi.org/10.1128/MCB.01523-12.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.