21
Views
27
CrossRef citations to date
0
Altmetric
Article

Chromatin Architecture and Transcription Factor Binding Regulate Expression of Erythrocyte Membrane Protein Genes

, , , , , , & show all
Pages 5399-5412 | Received 15 Jun 2009, Accepted 09 Aug 2009, Published online: 21 Mar 2023

REFERENCES

  • Andrews, N. C., H. Erdjument-Bromage, M. B. Davidson, P. Tempst, and S. H. Orkin. 1993. Erythroid transcription factor NF-E2 is a haematopoietic-specific basic-leucine zipper protein. Nature 362:722–728.
  • Anguita, E., J. Hughes, C. Heyworth, G. A. Blobel, W. G. Wood, and D. R. Higgs. 2004. Globin gene activation during haemopoiesis is driven by protein complexes nucleated by GATA-1 and GATA-2. EMBO J. 23:2841–2852.
  • Armstrong, J. A., and B. M. Emerson. 1996. NF-E2 disrupts chromatin structure at human beta-globin locus control region hypersensitive site 2 in vitro. Mol. Cell. Biol. 16:5634–5644.
  • Bieda, M., X. Xu, M. A. Singer, R. Green, and P. J. Farnham. 2006. Unbiased location analysis of E2F1-binding sites suggests a widespread role for E2F1 in the human genome. Genome Res. 16:595–605.
  • Blobel, G. A., T. Nakajima, R. Eckner, M. Montminy, and S. H. Orkin. 1998. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc. Natl. Acad. Sci. USA 95:2061–2066.
  • Boulanger, L., D. E. Sabatino, E. Y. Wong, A. P. Cline, L. J. Garrett, M. Garbarz, D. Dhermy, D. M. Bodine, and P. G. Gallagher. 2002. Erythroid expression of the human alpha-spectrin gene promoter is mediated by GATA-1- and NF-E2-binding proteins. J. Biol. Chem. 277:41563–41570.
  • Bresnick, E. H., K. D. Johnson, S. I. Kim, and H. Im. 2006. Establishment and regulation of chromatin domains: mechanistic insights from studies of hemoglobin synthesis. Prog. Nucleic Acid Res. Mol. Biol. 81:435–471.
  • Brodsky, A. S., C. A. Meyer, I. A. Swinburne, G. Hall, B. J. Keenan, X. S. Liu, E. A. Fox, and P. A. Silver. 2005. Genomic mapping of RNA polymerase II reveals sites of co-transcriptional regulation in human cells. Genome Biol. 6:R64.
  • Carter, D., L. Chakalova, C. S. Osborne, Y. F. Dai, and P. Fraser. 2002. Long-range chromatin regulatory interactions in vivo. Nat. Genet. 32:623–626.
  • Cheng, Y., D. C. King, L. C. Dore, X. Zhang, Y. Zhou, Y. Zhang, C. Dorman, D. Abebe, S. A. Kumar, F. Chiaromonte, W. Miller, R. D. Green, M. J. Weiss, and R. C. Hardison. 2008. Transcriptional enhancement by GATA1-occupied DNA segments is strongly associated with evolutionary constraint on the binding site motif. Genome Res. 18:1896–1905.
  • Cho, Y., S. H. Song, J. J. Lee, N. Choi, C. G. Kim, A. Dean, and A. Kim. 2008. The role of transcriptional activator GATA-1 at human beta-globin HS2. Nucleic Acids Res. 36:4521–4528.
  • Chu, X., D. Thompson, L. J. Yee, and L. A. Sung. 2000. Genomic organization of mouse and human erythrocyte tropomodulin genes encoding the pointed end capping protein for the actin filaments. Gene 256:271–281.
  • Costessi, L., G. Devescovi, F. E. Baralle, and A. F. Muro. 2006. Brain-specific promoter and polyadenylation sites of the beta-adducin pre-mRNA generate an unusually long 3′-UTR. Nucleic Acids Res. 34:243–253.
  • Crispino, J. D., M. B. Lodish, J. P. MacKay, and S. H. Orkin. 1999. Use of altered specificity mutants to probe a specific protein-protein interaction in differentiation: the GATA-1:FOG complex. Mol. Cell 3:219–228.
  • Demers, C., C. P. Chaturvedi, J. A. Ranish, G. Juban, P. Lai, F. Morle, R. Aebersold, F. J. Dilworth, M. Groudine, and M. Brand. 2007. Activator-mediated recruitment of the MLL2 methyltransferase complex to the beta-globin locus. Mol. Cell 27:573–584.
  • Elnitski, L., R. C. Hardison, J. Li, S. Yang, D. Kolbe, P. Eswara, M. J. O'Connor, S. Schwartz, W. Miller, and F. Chiaromonte. 2003. Distinguishing regulatory DNA from neutral sites. Genome Res. 13:64–72.
  • Elnitski, L., W. Miller, and R. Hardison. 1997. Conserved E boxes function as part of the enhancer in hypersensitive site 2 of the beta-globin locus control region. Role of basic helix-loop-helix proteins. J. Biol. Chem. 272:369–378.
  • Gallagher, P. G. 2003. Regulation of erythrocyte membrane protein gene expression. Curr. Opin. Hematol. 10:115–122.
  • Gallagher, P. G., and B. G. Forget. 1998. An alternate promoter directs expression of a truncated, muscle-specific isoform of the human ankyrin 1 gene. J. Biol. Chem. 273:1339–1348.
  • Gallagher, P. G., D. G. Nilson, L. A. Steiner, Y. D. Maksimova, J. Y. Lin, and D. M. Bodine. 2009. An insulator with barrier-element activity promotes alpha-spectrin gene expression in erythroid cells. Blood 113:1547–1554.
  • Gallagher, P. G., M. Romana, W. T. Tse, S. E. Lux, and B. G. Forget. 2000. The human ankyrin-1 gene is selectively transcribed in erythroid cell lines despite the presence of a housekeeping-like promoter. Blood 96:1136–1143.
  • Gallagher, P. G., D. E. Sabatino, M. Romana, A. P. Cline, L. J. Garrett, D. M. Bodine, and B. G. Forget. 1999. A human beta-spectrin gene promoter directs high level expression in erythroid but not muscle or neural cells. J. Biol. Chem. 274:6062–6073.
  • Gallagher, P. G., E. Wong, and C. Wong. 1998. A novel isoform of ankyrin 1 (ANK1) expressed in brain, heart and skeletal muscle is directed by an alternate promoter. Blood 92:300a.
  • Gascard, P., G. Lee, L. Coulombel, I. Auffray, M. Lum, M. Parra, J. G. Conboy, N. Mohandas, and J. A. Chasis. 1998. Characterization of multiple isoforms of protein 4.1R expressed during erythroid terminal differentiation. Blood 92:4404–4414.
  • Giardine, B., C. Riemer, R. C. Hardison, R. Burhans, L. Elnitski, P. Shah, Y. Zhang, D. Blankenberg, I. Albert, J. Taylor, W. Miller, W. J. Kent, and A. Nekrutenko. 2005. Galaxy: a platform for interactive large-scale genome analysis. Genome Res. 15:1451–1455.
  • Goardon, N., J. A. Lambert, P. Rodriguez, P. Nissaire, S. Herblot, P. Thibault, D. Dumenil, J. Strouboulis, P. H. Romeo, and T. Hoang. 2006. ETO2 coordinates cellular proliferation and differentiation during erythropoiesis. EMBO J. 25:357–366.
  • Gong, Q. H., J. C. McDowell, and A. Dean. 1996. Essential role of NF-E2 in remodeling of chromatin structure and transcriptional activation of the epsilon-globin gene in vivo by 5′ hypersensitive site 2 of the beta-globin locus control region. Mol. Cell. Biol. 16:6055–6064.
  • Goodwin, A. J., J. M. McInerney, M. A. Glander, O. Pomerantz, and C. H. Lowrey. 2001. In vivo formation of a human beta-globin locus control region core element requires binding sites for multiple factors including GATA-1, NF-E2, erythroid Kruppel-like factor, and Sp1. J. Biol. Chem. 276:26883–26892.
  • Gourdon, G., F. Morle, J. Roche, N. Tourneur, V. Joulain, and J. Godet. 1992. Identification of GATA-1 and NF-E2 binding sites in the flanking regions of the human alpha-globin genes. Acta Haematol. 87:136–144.
  • Grass, J. A., H. Jing, S. I. Kim, M. L. Martowicz, S. Pal, G. A. Blobel, and E. H. Bresnick. 2006. Distinct functions of dispersed GATA factor complexes at an endogenous gene locus. Mol. Cell. Biol. 26:7056–7067.
  • Hardison, R. C. 2000. Conserved noncoding sequences are reliable guides to regulatory elements. Trends Genet. 16:369–372.
  • Hollenhorst, P. C., A. A. Shah, C. Hopkins, and B. J. Graves. 2007. Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev. 21:1882–1894.
  • Hong, W., M. Nakazawa, Y. Y. Chen, R. Kori, C. R. Vakoc, C. Rakowski, and G. A. Blobel. 2005. FOG-1 recruits the NuRD repressor complex to mediate transcriptional repression by GATA-1. EMBO J. 24:2367–2378.
  • Horak, C. E., M. C. Mahajan, N. M. Luscombe, M. Gerstein, S. M. Weissman, and M. Snyder. 2002. GATA-1 binding sites mapped in the beta-globin locus by using mammalian chIp-chip analysis. Proc. Natl. Acad. Sci. USA 99:2924–2929.
  • Hsu, M., C. A. Richardson, E. Olivier, C. Qiu, E. E. Bouhassira, C. H. Lowrey, and S. Fiering. 2009. Complex developmental patterns of histone modifications associated with the human beta-globin switch in primary cells. Exp. Hematol. 37:799–806.
  • Igarashi, K., K. Kataoka, K. Itoh, N. Hayashi, M. Nishizawa, and M. Yamamoto. 1994. Regulation of transcription by dimerization of erythroid factor NF-E2 p45 with small Maf proteins. Nature 367:568–572.
  • Im, H., J. A. Grass, K. D. Johnson, S. I. Kim, M. E. Boyer, A. N. Imbalzano, J. J. Bieker, and E. H. Bresnick. 2005. Chromatin domain activation via GATA-1 utilization of a small subset of dispersed GATA motifs within a broad chromosomal region. Proc. Natl. Acad. Sci. USA 102:17065–17070.
  • Jin, V. X., H. O'Geen, S. Iyengar, R. Green, and P. J. Farnham. 2007. Identification of an OCT4 and SRY regulatory module using integrated computational and experimental genomics approaches. Genome Res. 17:807–817.
  • Jing, H., C. R. Vakoc, L. Ying, S. Mandat, H. Wang, X. Zheng, and G. A. Blobel. 2008. Exchange of GATA factors mediates transitions in looped chromatin organization at a developmentally regulated gene locus. Mol. Cell 29:232–242.
  • Johnson, K. D., M. E. Boyer, J. A. Kang, A. Wickrema, A. B. Cantor, and E. H. Bresnick. 2007. Friend of GATA-1-independent transcriptional repression: a novel mode of GATA-1 function. Blood 109:5230–5233.
  • Johnson, K. D., S. I. Kim, and E. H. Bresnick. 2006. Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression profiles. Proc. Natl. Acad. Sci. USA 103:15939–15944.
  • Kadauke, S., and G. A. Blobel. 2009. Chromatin loops in gene regulation. Biochim. Biophys. Acta 1789:17–25.
  • Karolchik, D., R. M. Kuhn, R. Baertsch, G. P. Barber, H. Clawson, M. Diekhans, B. Giardine, R. A. Harte, A. S. Hinrichs, F. Hsu, K. M. Kober, W. Miller, J. S. Pedersen, A. Pohl, B. J. Raney, B. Rhead, K. R. Rosenbloom, K. E. Smith, M. Stanke, A. Thakkapallayil, H. Trumbower, T. Wang, A. S. Zweig, D. Haussler, and W. J. Kent. 2008. The UCSC Genome Browser Database: 2008 update. Nucleic Acids Res. 36:D773–D779.
  • Kim, H. R., B. S. Kennedy, and J. D. Engel. 1989. Two chicken erythrocyte band 3 mRNAs are generated by alternative transcriptional initiation and differential RNA splicing. Mol. Cell. Biol. 9:5198–5206.
  • Kim, S. I., S. J. Bultman, H. Jing, G. A. Blobel, and E. H. Bresnick. 2007. Dissecting molecular steps in chromatin domain activation during hematopoietic differentiation. Mol. Cell. Biol. 27:4551–4565.
  • Kim, T. H., Z. K. Abdullaev, A. D. Smith, K. A. Ching, D. I. Loukinov, R. D. Green, M. Q. Zhang, V. V. Lobanenkov, and B. Ren. 2007. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231–1245.
  • Kim, T. H., L. O. Barrera, M. Zheng, C. Qu, M. A. Singer, T. A. Richmond, Y. Wu, R. D. Green, and B. Ren. 2005. A high-resolution map of active promoters in the human genome. Nature 436:876–880.
  • King, D. C., J. Taylor, L. Elnitski, F. Chiaromonte, W. Miller, and R. C. Hardison. 2005. Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences. Genome Res. 15:1051–1060.
  • Koeffler, H. P., and D. W. Golde. 1980. Human myeloid leukemia cell lines: a review. Blood 56:344–350.
  • Kooren, J., R. J. Palstra, P. Klous, E. Splinter, M. von Lindern, F. Grosveld, and W. de Laat. 2007. Beta-globin active chromatin Hub formation in differentiating erythroid cells and in p45 NF-E2 knock-out mice. J. Biol. Chem. 282:16544–16552.
  • Kudo, S., M. Onda, and M. Fukuda. 1994. Characterization of glycophorin A transcripts: control by the common erythroid-specific promoter and alternative usage of different polyadenylation signals. J. Biochem. 116:183–192.
  • Kudrycki, K. E., and G. E. Shull. 1993. Rat kidney band 3 Cl-/HCO3- exchanger mRNA is transcribed from an alternative promoter. Am. J. Physiol. 264:F540–F547.
  • Lahlil, R., E. Lecuyer, S. Herblot, and T. Hoang. 2004. SCL assembles a multifactorial complex that determines glycophorin A expression. Mol. Cell. Biol. 24:1439–1452.
  • Law, A., K. Hirayoshi, T. O'Brien, and J. T. Lis. 1998. Direct cloning of DNA that interacts in vivo with a specific protein: application to RNA polymerase II and sites of pausing in Drosophila. Nucleic Acids Res. 26:919–924.
  • Layon, M. E., C. J. Ackley, R. J. West, and C. H. Lowrey. 2007. Expression of GATA-1 in a non-hematopoietic cell line induces beta-globin locus control region chromatin structure remodeling and an erythroid pattern of gene expression. J. Mol. Biol. 366:737–744.
  • Lecuyer, E., and T. Hoang. 2004. SCL: from the origin of hematopoiesis to stem cells and leukemia. Exp. Hematol. 32:11–24.
  • Letting, D. L., Y. Y. Chen, C. Rakowski, S. Reedy, and G. A. Blobel. 2004. Context-dependent regulation of GATA-1 by friend of GATA-1. Proc. Natl. Acad. Sci. USA 101:476–481.
  • Letting, D. L., C. Rakowski, M. J. Weiss, and G. A. Blobel. 2003. Formation of a tissue-specific histone acetylation pattern by the hematopoietic transcription factor GATA-1. Mol. Cell. Biol. 23:1334–1340.
  • Liang, S., B. Moghimi, T. P. Yang, J. Strouboulis, and J. Bungert. 2008. Locus control region mediated regulation of adult beta-globin gene expression. J. Cell. Biochem. 105:9–16.
  • Lis, J. 1998. Promoter-associated pausing in promoter architecture and postinitiation transcriptional regulation. Cold Spring Harbor Symp. Quant. Biol. 63:347–356.
  • Lurie, L. J., M. E. Boyer, J. A. Grass, and E. H. Bresnick. 2008. Differential GATA factor stabilities: implications for chromatin occupancy by structurally similar transcription factors. Biochemistry 47:859–869.
  • McKeown, C. R., R. B. Nowak, J. Moyer, M. A. Sussman, and V. M. Fowler. 2008. Tropomodulin1 is required in the heart but not the yolk sac for mouse embryonic development. Circ. Res. 103:1241–1248.
  • Migliaccio, A. R., G. Migliaccio, A. Di Baldassarre, and K. Eddleman. 2002. Circulating hematopoietic progenitor cells in a fetus with alpha thalassemia: comparison with the cells circulating in normal and non-thalassemic anemia fetuses and implications for in utero transplantations. Bone Marrow Transplant. 30:75–80.
  • Miles, J., J. A. Mitchell, L. Chakalova, B. Goyenechea, C. S. Osborne, L. O'Neill, K. Tanimoto, J. D. Engel, and P. Fraser. 2007. Intergenic transcription, cell-cycle and the developmentally regulated epigenetic profile of the human beta-globin locus. PLoS ONE 2:e630.
  • Mohandas, N., and P. G. Gallagher. 2008. Red cell membrane: past, present, and future. Blood 112:3939–3948.
  • Morrow, J. S., D. L. Rimm, S. P. Kennedy, C. D. Cianci, J. H. Sinard, and S. A. Weed. 1997. Of membrane stability and mosaics: the spectrin cytoskeleton, p. 485-540. In J. Hoffman and J. Jamieson (ed.), Handbook of physiology. Oxford, London, United Kingdom.
  • Mosser, E. A., J. D. Kasanov, E. C. Forsberg, B. K. Kay, P. A. Ney, and E. H. Bresnick. 1998. Physical and functional interactions between the transactivation domain of the hematopoietic transcription factor NF-E2 and WW domains. Biochemistry 37:13686–13695.
  • Motohashi, H., T. O'Connor, F. Katsuoka, J. D. Engel, and M. Yamamoto. 2002. Integration and diversity of the regulatory network composed of Maf and CNC families of transcription factors. Gene 294:1–12.
  • Motohashi, H., J. A. Shavit, K. Igarashi, M. Yamamoto, and J. D. Engel. 1997. The world according to Maf. Nucleic Acids Res. 25:2953–2959.
  • Muntean, A. G., and J. D. Crispino. 2005. Differential requirements for the activation domain and FOG-interaction surface of GATA-1 in megakaryocyte gene expression and development. Blood 106:1223–1231.
  • Muse, G. W., D. A. Gilchrist, S. Nechaev, R. Shah, J. S. Parker, S. F. Grissom, J. Zeitlinger, and K. Adelman. 2007. RNA polymerase is poised for activation across the genome. Nat. Genet. 39:1507–1511.
  • Noma, K., C. D. Allis, and S. I. Grewal. 2001. Transitions in distinct histone H3 methylation patterns at the heterochromatin domain boundaries. Science 293:1150–1155.
  • Noordermeer, D., and W. de Laat. 2008. Joining the loops: beta-globin gene regulation. IUBMB Life 60:824–833.
  • Orkin, S. H. 1990. Globin gene regulation and switching: circa 1990. Cell 63:665–672.
  • Osada, H., G. Grutz, H. Axelson, A. Forster, and T. H. Rabbitts. 1995. Association of erythroid transcription factors: complexes involving the LIM protein RBTN2 and the zinc-finger protein GATA1. Proc. Natl. Acad. Sci. USA 92:9585–9589.
  • Pal, S., A. B. Cantor, K. D. Johnson, T. B. Moran, M. E. Boyer, S. H. Orkin, and E. H. Bresnick. 2004. Coregulator-dependent facilitation of chromatin occupancy by GATA-1. Proc. Natl. Acad. Sci. USA 101:980–985.
  • Panzenbock, B., P. Bartunek, M. Y. Mapara, and M. Zenke. 1998. Growth and differentiation of human stem cell factor/erythropoietin-dependent erythroid progenitor cells in vitro. Blood 92:3658–3668.
  • Parra, M. K., S. L. Gee, M. J. Koury, N. Mohandas, and J. G. Conboy. 2003. Alternative 5′ exons and differential splicing regulate expression of protein 4.1R isoforms with distinct N-termini. Blood 101:4164–4171.
  • Patrinos, G. P., M. de Krom, E. de Boer, A. Langeveld, A. M. Imam, J. Strouboulis, W. de Laat, and F. G. Grosveld. 2004. Multiple interactions between regulatory regions are required to stabilize an active chromatin hub. Genes Dev. 18:1495–1509.
  • Pevny, L., C. S. Lin, V. D'Agati, M. C. Simon, S. H. Orkin, and F. Costantini. 1995. Development of hematopoietic cells lacking transcription factor GATA-1. Development 121:163–172.
  • Pevny, L., M. C. Simon, E. Robertson, W. H. Klein, S. F. Tsai, V. D'Agati, S. H. Orkin, and F. Costantini. 1991. Erythroid differentiation in chimaeric mice blocked by a targeted mutation in the gene for transcription factor GATA-1. Nature 349:257–260.
  • Pomerantz, O., A. J. Goodwin, T. Joyce, and C. H. Lowrey. 1998. Conserved elements containing NF-E2 and tandem GATA binding sites are required for erythroid-specific chromatin structure reorganization within the human beta-globin locus control region. Nucleic Acids Res. 26:5684–5691.
  • Radonjic, M., J. C. Andrau, P. Lijnzaad, P. Kemmeren, T. T. Kockelkorn, D. van Leenen, N. L. van Berkum, and F. C. Holstege. 2005. Genome-wide analyses reveal RNA polymerase II located upstream of genes poised for rapid response upon S. cerevisiae stationary phase exit. Mol. Cell 18:171–183.
  • Rentoft, M., K. Kim, Y. Cho, C. H. Lee, and A. Kim. 2008. Enhancer requirement for histone methylation linked with gene activation. FEBS J. 275:5994–6001.
  • Rougvie, A. E., and J. T. Lis. 1990. Postinitiation transcriptional control in Drosophila melanogaster. Mol. Cell. Biol. 10:6041–6045.
  • Sabatino, D. E., C. Wong, A. P. Cline, L. Pyle, L. J. Garrett, P. G. Gallagher, and D. M. Bodine. 2000. A minimal ankyrin promoter linked to a human gamma-globin gene demonstrates erythroid specific copy number dependent expression with minimal position or enhancer dependence in transgenic mice. J. Biol. Chem. 275:28549–28554.
  • Santos-Rosa, H., R. Schneider, A. J. Bannister, J. Sherriff, B. E. Bernstein, N. C. Emre, S. L. Schreiber, J. Mellor, and T. Kouzarides. 2002. Active genes are tri-methylated at K4 of histone H3. Nature 419:407–411.
  • Schubeler, D., D. M. MacAlpine, D. Scalzo, C. Wirbelauer, C. Kooperberg, F. van Leeuwen, D. E. Gottschling, L. P. O'Neill, B. M. Turner, J. Delrow, S. P. Bell, and M. Groudine. 2004. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18:1263–1271.
  • Schuh, A. H., A. J. Tipping, A. J. Clark, I. Hamlett, B. Guyot, F. J. Iborra, P. Rodriguez, J. Strouboulis, T. Enver, P. Vyas, and C. Porcher. 2005. ETO-2 associates with SCL in erythroid cells and megakaryocytes and provides repressor functions in erythropoiesis. Mol. Cell. Biol. 25:10235–10250.
  • Shivdasani, R. A., Y. Fujiwara, M. A. McDevitt, and S. H. Orkin. 1997. A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development. EMBO J. 16:3965–3973.
  • Siepel, A., G. Bejerano, J. S. Pedersen, A. S. Hinrichs, M. Hou, K. Rosenbloom, H. Clawson, J. Spieth, L. W. Hillier, S. Richards, G. M. Weinstock, R. K. Wilson, R. A. Gibbs, W. J. Kent, W. Miller, and D. Haussler. 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:1034–1050.
  • Siepel, A., and D. Haussler. 2004. Combining phylogenetic and hidden Markov models in biosequence analysis. J. Comput. Biol. 11:413–428.
  • Simon, M. C., L. Pevny, M. V. Wiles, G. Keller, F. Costantini, and S. H. Orkin. 1992. Rescue of erythroid development in gene targeted GATA-1- mouse embryonic stem cells. Nat. Genet. 1:92–98.
  • Stamatoyannopoulos, J. A., A. Goodwin, T. Joyce, and C. H. Lowrey. 1995. NF-E2 and GATA binding motifs are required for the formation of DNase I hypersensitive site 4 of the human beta-globin locus control region. EMBO J. 14:106–116.
  • Strahl, B. D., R. Ohba, R. G. Cook, and C. D. Allis. 1999. Methylation of histone H3 at lysine 4 is highly conserved and correlates with transcriptionally active nuclei in Tetrahymena. Proc. Natl. Acad. Sci. USA 96:14967–14972.
  • Takahashi, S., K. Onodera, H. Motohashi, N. Suwabe, N. Hayashi, N. Yanai, Y. Nabesima, and M. Yamamoto. 1997. Arrest in primitive erythroid cell development caused by promoter-specific disruption of the GATA-1 gene. J. Biol. Chem. 272:12611–12615.
  • Tripic, T., W. Deng, Y. Cheng, Y. Zhang, C. R. Vakoc, G. D. Gregory, R. C. Hardison, and G. A. Blobel. 2009. SCL and associated proteins distinguish active from repressive GATA transcription factor complexes. Blood 113:2191–2201.
  • Vakoc, C. R., D. L. Letting, N. Gheldof, T. Sawado, M. A. Bender, M. Groudine, M. J. Weiss, J. Dekker, and G. A. Blobel. 2005. Proximity among distant regulatory elements at the beta-globin locus requires GATA-1 and FOG-1. Mol. Cell 17:453–462.
  • Vakoc, C. R., M. M. Sachdeva, H. Wang, and G. A. Blobel. 2006. Profile of histone lysine methylation across transcribed mammalian chromatin. Mol. Cell. Biol. 26:9185–9195.
  • Vandesompele, J., K. De Preter, F. Pattyn, B. Poppe, N. Van Roy, A. De Paepe, and F. Speleman. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3:RESEARCH0034.
  • Vernimmen, D., M. De Gobbi, J. A. Sloane-Stanley, W. G. Wood, and D. R. Higgs. 2007. Long-range chromosomal interactions regulate the timing of the transition between poised and active gene expression. EMBO J. 26:2041–2051.
  • Wadman, I. A., H. Osada, G. G. Grutz, A. D. Agulnick, H. Westphal, A. Forster, and T. H. Rabbitts. 1997. The LIM-only protein Lmo2 is a bridging molecule assembling an erythroid, DNA-binding complex which includes the TAL1, E47, GATA-1 and Ldb1/NLI proteins. EMBO J. 16:3145–3157.
  • Walensky, L. D., M. Narla, and S. E. Lux. 2003. Disorders of the red blood cell membrane, p. 1709-1858. In R. I. Handin, S. E. Lux, and T. P. Stossel (ed.), Blood: principles and practice of hematology, 2nd ed. Lippincott Williams & Wilkins, Philadelphia, PA.
  • Wang, H., Y. Zhang, Y. Cheng, Y. Zhou, D. C. King, J. Taylor, F. Chiaromonte, J. Kasturi, H. Petrykowska, B. Gibb, C. Dorman, W. Miller, L. C. Dore, J. Welch, M. J. Weiss, and R. C. Hardison. 2006. Experimental validation of predicted mammalian erythroid cis-regulatory modules. Genome Res. 16:1480–1492.
  • Weinmann, A. S., P. S. Yan, M. J. Oberley, T. H. Huang, and P. J. Farnham. 2002. Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev. 16:235–244.
  • Weiss, M. J., G. Keller, and S. H. Orkin. 1994. Novel insights into erythroid development revealed through in vitro differentiation of GATA-1 embryonic stem cells. Genes Dev. 8:1184–1197.
  • Wilson, N. K., D. Miranda-Saavedra, S. Kinston, N. Bonadies, S. D. Foster, F. Calero-Nieto, M. A. Dawson, I. J. Donaldson, S. Dumon, J. Frampton, R. Janky, X. H. Sun, S. A. Teichmann, A. J. Bannister, and B. Gottgens. 2009. The transcriptional program controlled by the stem cell leukemia gene Scl/Tal1 during early embryonic hematopoietic development. Blood 113:5456–5465.
  • Wong, E. Y., J. Lin, B. G. Forget, D. M. Bodine, and P. G. Gallagher. 2004. Sequences downstream of the erythroid promoter are required for high level expression of the human alpha-spectrin gene. J. Biol. Chem. 279:55024–55033.
  • Wu, J. L., Y. S. Lin, C. C. Yang, Y. J. Lin, S. F. Wu, Y. T. Lin, and C. F. Huang. 2009. MCRS2 represses the transactivation activities of Nrf1. BMC Cell Biol. 10:9.
  • Xu, X., M. Bieda, V. X. Jin, A. Rabinovich, M. J. Oberley, R. Green, and P. J. Farnham. 2007. A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res. 17:1550–1561.
  • Xu, Z., X. Meng, Y. Cai, H. Liang, L. Nagarajan, and S. J. Brandt. 2007. Single-stranded DNA-binding proteins regulate the abundance of LIM domain and LIM domain-binding proteins. Genes Dev. 21:942–955.
  • Yamamoto, M. L., T. A. Clark, S. L. Gee, J. A. Kang, A. C. Schweitzer, A. Wickrema, and J. G. Conboy. 2009. Alternative pre-mRNA splicing switches modulate gene expression in late erythropoiesis. Blood 113:3363–3370.
  • Yao, W., J. Nathanson, I. Lian, F. H. Gage, and L. A. Sung. 2007. Mouse erythrocyte tropomodulin in the brain reported by lacZ knocked-in downstream from the E1 promoter. Gene Expr. Patterns. 8:36–46.
  • Yenerel, M. N., I. B. Sundell, J. Weese, M. Bulger, and D. M. Gilligan. 2005. Expression of adducin genes during erythropoiesis: a novel erythroid promoter for ADD2. Exp. Hematol. 33:758–766.
  • Yun, S., Y. Rim, and E. H. Jho. 2007. Induced expression of the transcription of tropomodulin 1 by Wnt5a and characterization of the tropomodulin 1 promoter. Biochem. Biophys. Res. Commun. 363:727–732.
  • Zeng, P. Y., C. R. Vakoc, Z. C. Chen, G. A. Blobel, and S. L. Berger. 2006. In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. BioTechniques41:694. 696:698.
  • Zhang, J., M. Socolovsky, A. W. Gross, and H. F. Lodish. 2003. Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 102:3938–3946.
  • Zhang, Y., H. H. Ng, H. Erdjument-Bromage, P. Tempst, A. Bird, and D. Reinberg. 1999. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev. 13:1924–1935.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.