52
Views
50
CrossRef citations to date
0
Altmetric
Article

Role of Phospholipase Cγ1 in Cell Spreading Requires Association with a β-Pix/GIT1-Containing Complex, Leading to Activation of Cdc42 and Rac1

&
Pages 5790-5805 | Received 03 May 2007, Accepted 24 May 2007, Published online: 01 Apr 2023

REFERENCES

  • Bae, J. Y., S. J. Ahn, J. E. Lee, J. E. Kim, M. R. Han, W. Han, S. W. Kim, H. J. Shin, S. J. Lee, D. Park, and D. Y. Noh. 2005. BetaPix-a enhances the activity of phospholipase Cgamma1 by binding SH3 domain in breast cancer. J. Cell. Biochem. 94:1010–1016.
  • Baird, D., Q. Feng, and R. A. Cerione. 2005. The Cool-2/alpha-Pix protein mediates a Cdc42-Rac signaling cascade. Curr. Biol. 15:1–10.
  • Bialkowska, K., S. Kulkarni, X. Du, D. E. Goll, T. C. Saido, and J. E. Fox. 2000. Evidence that beta3 integrin-induced Rac activation involves the calpain-dependent formation of integrin clusters that are distinct from the focal complexes and focal adhesions that form as Rac and RhoA become active. J. Cell Biol. 151:685–696.
  • Braiman, A., M. Barda-Saad, C. L. Sommers, and L. E. Samelson. 2006. Recruitment and activation of PLCgamma1 in T cells: a new insight into old domains. EMBO J. 25:774–784.
  • Carragher, N. O., S. M. Walker, L. A. Scott Carragher, F. Harris, T. K. Sawyer, V. G. Brunton, B. W. Ozanne, and M. C. Frame. 2006. Calpain 2 and Src dependence distinguishes mesenchymal and amoeboid modes of tumour cell invasion: a link to integrin function. Oncogene 25:5726–5740.
  • Cau, J., and A. Hall. 2005. Cdc42 controls the polarity of the actin and microtubule cytoskeletons through two distinct signal transduction pathways. J. Cell Sci. 118:2579–2587.
  • Chahdi, A., B. Miller, and A. Sorokin. 2005. Endothelin 1 induces beta 1Pix translocation and Cdc42 activation via protein kinase A-dependent pathway. J. Biol. Chem. 280:578–584.
  • Chattopadhyay, A., M. Vecchi, Q. Ji, R. Mernaugh, and G. Carpenter. 1999. The role of individual SH2 domains in mediating association of phospholipase C-gamma1 with the activated EGF receptor. J. Biol. Chem. 274:26091–26097.
  • Chen, P., H. Xie, M. C. Sekar, K. Gupta, and A. Wells. 1994. Epidermal growth factor receptor-mediated cell motility: phospholipase C activity is required, but mitogen-activated protein kinase activity is not sufficient for induced cell movement. J. Cell Biol. 127:847–857.
  • Clerk, A., F. H. Pham, S. J. Fuller, E. Sahai, K. Aktories, R. Marais, C. Marshall, and P. H. Sugden. 2001. Regulation of mitogen-activated protein kinases in cardiac myocytes through the small G protein Rac1. Mol. Cell. Biol. 21:1173–1184.
  • DeMali, K. A., K. Wennerberg, and K. Burridge. 2003. Integrin signaling to the actin cytoskeleton. Curr. Opin. Cell Biol. 15:572–582.
  • Feng, Q., D. Baird, and R. A. Cerione. 2004. Novel regulatory mechanisms for the Dbl family guanine nucleotide exchange factor Cool-2/alpha-Pix. EMBO J. 23:3492–3504.
  • Filipenko, N. R., S. Attwell, C. Roskelley, and S. Dedhar. 2005. Integrin-linked kinase activity regulates Rac- and Cdc42-mediated actin cytoskeleton reorganization via alpha-PIX. Oncogene 24:5837–5849.
  • Flanders, J. A., Q. Feng, S. Bagrodia, M. T. Laux, A. Singavarapu, and R. A. Cerione. 2003. The Cbl proteins are binding partners for the Cool/Pix family of p21-activated kinase-binding proteins. FEBS Lett. 550:119–123.
  • Fleming, I. N., C. M. Elliott, and J. H. Exton. 1998. Phospholipase C-gamma, protein kinase C and Ca2+/calmodulin-dependent protein kinase II are involved in platelet-derived growth factor-induced phosphorylation of Tiam1. FEBS Lett. 249:229–233.
  • Frank, S. R., M. R. Adelstein, and S. H. Hansen. 2006. GIT2 represses Crk- and Rac1-regulated cell spreading and Cdc42-mediated focal adhesion turnover. EMBO J. 25:1848–1859.
  • Friedl, P., and E. B. Brocker. 2000. The biology of cell locomotion within three-dimensional extracellular matrix. Cell. Mol. Life Sci. 57:41–64.
  • Friedl, P., and K. Wolf. 2003. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3:362–374.
  • Haendeler, J., G. Yin, Y. Hojo, Y. Saito, M. Melaragno, C. Yan, V. K. Sharma, M. Heller, R. Aebersold, and B. C. Berk. 2003. GIT1 mediates Src-dependent activation of phospholipase Cgamma by angiotensin II and epidermal growth factor. J. Biol. Chem. 278:49936–49944.
  • Hall, A. 2005. Rho GTPases and the control of cell behaviour. Biochem. Soc. Trans. 33:891–895.
  • Hoefen, R. J., and B. C. Berk. 2006. The multifunctional GIT family of proteins. J. Cell Sci. 119:1469–1475.
  • Inoue, O., K. Suzuki-Inoue, W. L. Dean, J. Frampton, and S. P. Watson. 2003. Integrin alpha2beta1 mediates outside-in regulation of platelet spreading on collagen through activation of Src kinases and PLCgamma2. J. Cell Biol. 160:769–780.
  • Ji, Q. S., A. Chattopadhyay, M. Vecchi, and G. Carpenter. 1999. Physiological requirement for both SH2 domains for phospholipase C-γ1 function and interaction with platelet-derived growth factor receptors. Mol. Cell. Biol. 19:4961–4970.
  • Ji, Q. S., S. Ermini, J. Baulida, F. L. Sun, and G. Carpenter. 1998. Epidermal growth factor signaling and mitogenesis in Plcg1 null mouse embryonic fibroblasts. Mol. Biol. Cell 9:749–757.
  • Jones, N. P., J. Peak, S. Brader, S. A. Eccles, and M. Katan. 2005. PLCgamma1 is essential for early events in integrin signalling required for cell motility. J. Cell Sci. 118:2695–2706.
  • Kassis, J., D. A. Lauffenburger, T. Turner, and A. Wells. 2001. Tumor invasion as dysregulated cell motility. Semin. Cancer Biol. 11:105–117.
  • Kassis, J., J. Moellinger, H. Lo, N. M. Greenberg, H. G. Kim, and A. Wells. 1999. A role for phospholipase C-gamma-mediated signaling in tumor cell invasion. Clin. Cancer Res. 5:2251–2260.
  • Katan, M. 2005. New insights into the families of PLC enzymes: looking back and going forward. Biochem. J. 391:e7–e9.
  • Kim, S., J. Ko, H. Shin, J. R. Lee, C. Lim, J. H. Han, W. D. Altrock, C. C. Garner, E. D. Gundelfinger, R. T. Premont, B. K. Kaang, and E. Kim. 2003. The GIT family of proteins forms multimers and associates with the presynaptic cytomatrix protein Piccolo. J. Biol. Chem. 278:6291–6300.
  • Kim, S. H., Z. Li, and D. B. Sacks. 2000. E-cadherin-mediated cell-cell attachment activates Cdc42. J. Biol. Chem. 275:36999–37005.
  • Kulkarni, S., D. E. Goll, and J. E. Fox. 2002. Calpain cleaves RhoA generating a dominant-negative form that inhibits integrin-induced actin filament assembly and cell spreading. J. Biol. Chem. 277:24435–24441.
  • Kulkarni, S., T. C. Saido, K. Suzuki, and J. E. Fox. 1999. Calpain mediates integrin-induced signaling at a point upstream of Rho family members. J. Biol. Chem. 274:21265–21275.
  • Kundra, V., J. A. Escobedo, A. Kazlauskas, H. K. Kim, S. G. Rhee, L. T. Williams, and B. R. Zetter. 1994. Regulation of chemotaxis by the platelet-derived growth factor receptor-beta. Nature 367:474–476.
  • Langholz, O., D. Roeckel, D. Petersohn, E. Broermann, B. Eckes, and T. Krieg. 1997. Cell-matrix interactions induce tyrosine phosphorylation of MAP kinases ERK1 and ERK2 and PLCgamma-1 in two-dimensional and three-dimensional cultures of human fibroblasts. Exp. Cell Res. 235:22–27.
  • Lee, J., I. D. Jung, W. K. Chang, C. G. Park, D. Y. Cho, E. Y. Shin, D. W. Seo, Y. K. Kim, H. W. Lee, J. W. Han, and H. Y. Lee. 2005. p85 beta-PIX is required for cell motility through phosphorylations of focal adhesion kinase and p38 MAP kinase. Exp. Cell Res. 307:315–328.
  • Lee, S. H., M. Eom, S. J. Lee, S. Kim, H. J. Park, and D. Park. 2001. BetaPix-enhanced p38 activation by Cdc42/Rac/PAK/MKK3/6-mediated pathway. Implication in the regulation of membrane ruffling. J. Biol. Chem. 276:25066–25072.
  • Liao, F., H. S. Shin, and S. G. Rhee. 1993. In vitro tyrosine phosphorylation of PLC-gamma 1 and PLC-gamma 2 by src-family protein tyrosine kinases. Biochem. Biophys. Res. Commun. 191:1028–1033.
  • Manabe, R., M. Kovalenko, D. J. Webb, and A. R. Horwitz. 2002. GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration. J. Cell Sci. 115:1497–1510.
  • Mangin, P., Y. Yuan, I. Goncalves, A. Eckly, M. Freund, J. P. Cazenave, C. Gachet, S. P. Jackson, and F. Lanza. 2003. Signaling role for phospholipase C gamma 2 in platelet glycoprotein Ib alpha calcium flux and cytoskeletal reorganization. Involvement of a pathway distinct from FcR gamma chain and Fc gamma RIIA. J. Biol. Chem. 278:32880–32891.
  • Mostafavi-Pour, Z., J. A. Askari, S. J. Parkinson, P. J. Parker, T. T. Ng, and M. J. Humphries. 2003. Integrin-specific signaling pathways controlling focal adhesion formation and cell migration. J. Cell Biol. 161:155–167.
  • Mott, H. R., D. Nietlispach, K. A. Evetts, and D. Owen. 2005. Structural analysis of the SH3 domain of beta-PIX and its interaction with alpha-p21 activated kinase (PAK). Biochemistry 44:10977–10983.
  • Mouneimne, G., L. Soon, V. DesMarais, M. Sidani, X. Song, S. C. Yip, M. Ghosh, R. Eddy, J. M. Backer, and J. Condeelis. 2004. Phospholipase C and cofilin are required for carcinoma cell directionality in response to EGF stimulation. J. Cell Biol. 166:697–708.
  • Nakamura, I., L. Lipfert, G. A. Rodan, and L. T. Duong. 2001. Convergence of alpha(v)beta(3) integrin- and macrophage colony stimulating factor-mediated signals on phospholipase Cgamma in prefusion osteoclasts. J. Cell Biol. 152:361–373.
  • Natarajan, K., G. Yin, and B. C. Berk. 2004. Scaffolds direct Src-specific signaling in response to angiotensin II: new roles for Cas and GIT1. Mol. Pharmacol. 65:822–825.
  • Nayal, A., D. J. Webb, C. M. Brown, E. M. Schaefer, M. Vicente-Manzanares, and A. R. Horwitz. 2006. Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. J. Cell Biol. 173:587–589.
  • Nobes, C. D., and A. Hall. 1995. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62.
  • Park, E., M. Na, J. Choi, S. Kim, J. R. Lee, J. Yoon, D. Park, M. Sheng, and E. Kim. 2003. The Shank family of postsynaptic density proteins interacts with and promotes synaptic accumulation of the beta PIX guanine nucleotide exchange factor for Rac1 and Cdc42. J. Biol. Chem. 278:19220–19229.
  • Phee, H., R. T. Abraham, and A. Weiss. 2005. Dynamic recruitment of PAK1 to the immunological synapse is mediated by PIX independently of SLP-76 and Vav1. Nat. Immunol. 6:608–617.
  • Premont, R. T., S. J. Perry, R. Schmalzigaug, J. T. Roseman, Y. Xing, and A. Claing. 2004. The GIT/PIX complex: an oligomeric assembly of GIT family ARF GTPase-activating proteins and PIX family Rac1/Cdc42 guanine nucleotide exchange factors. Cell. Signal. 16:1001–1011.
  • Price, J. T., T. Tiganis, A. Agarwal, D. Djakiew, and E. W. Thompson. 1999. Epidermal growth factor promotes MDA-MB-231 breast cancer cell migration through a phosphatidylinositol 3′-kinase and phospholipase C-dependent mechanism. Cancer Res. 59:5475–5478.
  • Price, L. S., M. Langeslag, J. P. ten Klooster, P. L. Hordijk, K. Jalink, and J. G. Collard. 2003. Calcium signaling regulates translocation and activation of Rac. J. Biol. Chem. 278:39413–39421.
  • Price, L. S., J. Leng, M. A. Schwartz, and G. M. Bokoch. 1998. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell 9:1863–1871.
  • Raucher, D., T. Stauffer, W. Chen, K. Shen, S. Guo, J. D. York, M. P. Sheetz, and T. Meyer. 2000. Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100:221–228.
  • Rebecchi, M. J., and S. N. Pentyala. 2000. Structure, function, and control of phosphoinositide-specific phospholipase C. Physiol. Rev. 80:1291–1335.
  • Rhee, S.-G. 2001. Regulation of phophoinositide-specific phospholipase C. Annu. Rev. Biochem. 70:281–312.
  • Ridley, A. J., A. J. Self, F. Kasmi, H. F. Paterson, A. Hall, C. J. Marshall, and C. Ellis. 1993. Rho family GTPase activating proteins p190, bcr and rhoGAP show distinct specificities in vitro and in vivo. EMBO J. 12:5151–5160.
  • Rodriguez, R., M. Matsuda, O. Perisic, J. Bravo, A. Paul, N. P. Jones, Y. Light, K. Swann, R. L. Williams, and M. Katan. 2001. Tyrosine residues in phospholipase Cgamma 2 essential for the enzyme function in B-cell signaling. J. Biol. Chem. 276:47982–47992.
  • Ronnstrand, L., A. Siegbahn, C. Rorsman, M. Johnell, K. Hansen, and C. H. Heldin. 1999. Overactivation of phospholipase C-gamma1 renders platelet-derived growth factor beta-receptor-expressing cells independent of the phosphatidylinositol 3-kinase pathway for chemotaxis. J. Biol. Chem. 274:22089–22094.
  • Rosenberger, G., A. Gal, and K. Kutsche. 2005. AlphaPIX associates with calpain 4, the small subunit of calpain, and has a dual role in integrin-mediated cell spreading. J. Biol. Chem. 280:6879–6889.
  • Rosenberger, G., and K. Kutsche. 2006. AlphaPIX and betaPIX and their role in focal adhesion formation. Eur. J. Cell Biol. 85:265–274.
  • Sahai, E., and C. J. Marshall. 2003. Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat. Cell Biol. 5:711–719.
  • Satish, L., H. C. Blair, A. Glading, and A. Wells. 2005. Interferon-inducible protein 9 (CXCL11)-induced cell motility in keratinocytes requires calcium flux-dependent activation of μ-calpain. Mol. Cell. Biol. 25:1922–1941.
  • Schmitz, U., M. Ishida, and B. C. Berk. 1997. Angiotensin II stimulates tyrosine phosphorylation of phospholipase C-gamma-associated proteins. Characterization of a c-Src-dependent 97-kD protein in vascular smooth muscle cells. Circ. Res. 81:550–557.
  • Scott, C. C., W. Dobson, R. J. Botelho, N. Coady-Osberg, P. Chavrier, D. A. Knecht, C. Heath, P. Stahl, and S. Grinstein. 2005. Phosphatidylinositol-4,5-bisphosphate hydrolysis directs actin remodeling during phagocytosis. J. Cell Biol. 169:139–149.
  • ten Klooster, J. P., Z. M. Jaffer, J. Chernoff, and P. L. Hordijk. 2006. Targeting and activation of Rac1 are mediated by the exchange factor beta-Pix. J. Cell Biol. 172:759–769.
  • Thomas, S. M., F. M. Coppelli, A. Wells, W. E. Gooding, J. Song, J. Kassis, S. D. Drenning, and J. R. Grandis. 2003. Epidermal growth factor receptor-stimulated activation of phospholipase Cgamma-1 promotes invasion of head and neck squamous cell carcinoma. Cancer Res. 63:5629–5635.
  • Turner, C. E. 2000. Paxillin interactions. J. Cell Sci. 113:4139–4140.
  • Turner, T., M. V. Epps-Fung, J. Kassis, and A. Wells. 1997. Molecular inhibition of phospholipase Cgamma signaling abrogates DU-145 prostate tumor cell invasion. Clin. Cancer Res. 3:2275–2282.
  • Tvorogov, D., X. J. Wang, R. Zent, and G. Carpenter. 2005. Integrin-dependent PLC-gamma1 phosphorylation mediates fibronectin-dependent adhesion. J. Cell Sci. 118:601–610.
  • Wells, A. 2000. Tumor invasion: role of growth factor-induced cell motility. Adv. Cancer Res. 78:31–101.
  • Wolf, K., I. Mazo, H. Leung, K. Engelke, U. H. von Andrian, E. I. Deryugina, A. Y. Strongin, E. B. Brocker, and P. Friedl. 2003. Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J. Cell Biol. 160:267–277.
  • Wonerow, P., A. C. Pearce, D. J. Vaux, and S. P. Watson. 2003. A critical role for phospholipase Cgamma2 in alphaIIbbeta3-mediated platelet spreading. J. Biol. Chem. 278:37520–37529.
  • Yin, G., Q. Zheng, C. Yan, and B. C. Berk. 2005. GIT1 is a scaffold for ERK1/2 activation in focal adhesions. J. Biol. Chem. 280:27705–27712.
  • Zhang, H., D. J. Webb, H. Asmussen, and A. F. Horwitz. 2003. Synapse formation is regulated by the signaling adaptor GIT1. J. Cell Biol. 161:131–142.
  • Zhang, X., A. Chattopadhyay, Q. S. Ji, J. D. Owen, P. J. Ruest, G. Carpenter, and S. K. Hanks. 1999. Focal adhesion kinase promotes phospholipase C-gamma1 activity. Proc. Natl. Acad. Sci. USA 96:9021–9026.
  • Zhao, Z. S., E. Manser, T. H. Loo, and L. Lim. 2000. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell. Biol. 20:6354–6363.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.