22
Views
5
CrossRef citations to date
0
Altmetric
Article

Physical Connectivity Mapping by Circular Permutation of Human Telomerase RNA Reveals New Regions Critical for Activity and Processivity

& ORCID Icon
Pages 251-261 | Received 14 Aug 2015, Accepted 22 Oct 2015, Published online: 17 Mar 2023

REFERENCES

  • Shay JW, Bacchetti S. 1997. A survey of telomerase activity in human cancer. Eur J Cancer 33:787–791. http://dx.doi.org/10.1016/S0959-8049(97)00062-2.
  • Armanios M, Blackburn EH. 2012. The telomere syndromes. Nat Rev Genet 13:693–704. http://dx.doi.org/10.1038/nrg3246.
  • Greider CW. 1991. Telomerase is processive. Mol Cell Biol 11:4572–4580. http://dx.doi.org/10.1128/MCB.11.9.4572.
  • Egan ED, Collins K. 2010. Specificity and stoichiometry of subunit interactions in the human telomerase holoenzyme assembled in vivo. Mol Cell Biol 30:2775–2786. http://dx.doi.org/10.1128/MCB.00151-10.
  • Zhang Q, Kim NK, Feigon J. 2011. Architecture of human telomerase RNA. Proc Natl Acad Sci U S A 108:20325–20332. http://dx.doi.org/10.1073/pnas.1100279108.
  • Mefford MA, Rafiq Q, Zappulla DC. 2013. RNA connectivity requirements between conserved elements in the core of the yeast telomerase RNP. EMBO J 32:2980–2993. http://dx.doi.org/10.1038/emboj.2013.227.
  • Lin J, Ly H, Hussain A, Abraham M, Pearl S, Tzfati Y, Parslow TG, Blackburn EH. 2004. A universal telomerase RNA core structure includes structured motifs required for binding the telomerase reverse transcriptase protein. Proc Natl Acad Sci U S A 101:14713–14718. http://dx.doi.org/10.1073/pnas.0405879101.
  • Greider CW, Blackburn EH. 1989. A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature 337:331–337. http://dx.doi.org/10.1038/337331a0.
  • Lai CK, Miller MC, Collins K. 2002. Template boundary definition in Tetrahymena telomerase. Genes Dev 16:415–420. http://dx.doi.org/10.1101/gad.962602.
  • Chen JL, Greider CW. 2003. Template boundary definition in mammalian telomerase. Genes Dev 17:2747–2752. http://dx.doi.org/10.1101/gad.1140303.
  • Box JA, Bunch JT, Zappulla DC, Glynn EF, Baumann P. 2008. A flexible template boundary element in the RNA subunit of fission yeast telomerase. J Biol Chem 283:24224–24233. http://dx.doi.org/10.1074/jbc.M802043200.
  • Seto AG, Umansky K, Tzfati Y, Zaug AJ, Blackburn EH, Cech TR. 2003. A template-proximal RNA paired element contributes to Saccharomyces cerevisiae telomerase activity. RNA 9:1323–1332. http://dx.doi.org/10.1261/rna.5570803.
  • Qiao F, Cech TR. 2008. Triple-helix structure in telomerase RNA contributes to catalysis. Nat Struct Mol Biol 15:634–640. http://dx.doi.org/10.1038/nsmb.1420.
  • Kim NK, Zhang Q, Zhou J, Theimer CA, Peterson RD, Feigon J. 2008. Solution structure and dynamics of the wild-type pseudoknot of human telomerase RNA. J Mol Biol 384:1249–1261. http://dx.doi.org/10.1016/j.jmb.2008.10.005.
  • Cash DD, Cohen-Zontag O, Kim NK, Shefer K, Brown Y, Ulyanov NB, Tzfati Y, Feigon J. 2013. Pyrimidine motif triple helix in the Kluyveromyces lactis telomerase RNA pseudoknot is essential for function in vivo. Proc Natl Acad Sci U S A 110:10970–10975. http://dx.doi.org/10.1073/pnas.1309590110.
  • Shefer K, Brown Y, Gorkovoy V, Nussbaum T, Ulyanov NB, Tzfati Y. 2007. A triple helix within a pseudoknot is a conserved and essential element of telomerase RNA. Mol Cell Biol 27:2130–2143. http://dx.doi.org/10.1128/MCB.01826-06.
  • Brown AF, Podlevsky JD, Qi X, Chen Y, Xie M, Chen JJ. 2014. A self-regulating template in human telomerase. Proc Natl Acad Sci U S A 111:11311–11316. http://dx.doi.org/10.1073/pnas.1402531111.
  • Mitchell JR, Collins K. 2000. Human telomerase activation requires two independent interactions between telomerase RNA and telomerase reverse transcriptase. Mol Cell 6:361–371. http://dx.doi.org/10.1016/S1097-2765(00)00036-8.
  • Tesmer VM, Ford LP, Holt SE, Frank BC, Yi X, Aisner DL, Ouellette M, Shay JW, Wright WE. 1999. Two inactive fragments of the integral RNA cooperate to assemble active telomerase with the human protein catalytic subunit (hTERT) in vitro. Mol Cell Biol 19:6207–6216. http://dx.doi.org/10.1128/MCB.19.9.6207.
  • Mason DX, Goneska E, Greider CW. 2003. Stem-loop IV of tetrahymena telomerase RNA stimulates processivity in trans. Mol Cell Biol 23:5606–5613. http://dx.doi.org/10.1128/MCB.23.16.5606-5613.2003.
  • Qi X, Li Y, Honda S, Hoffmann S, Marz M, Mosig A, Podlevsky JD, Stadler PF, Selker EU, Chen JJ. 2013. The common ancestral core of vertebrate and fungal telomerase RNAs. Nucleic Acids Res 41:450–462. http://dx.doi.org/10.1093/nar/gks980.
  • Brown Y, Abraham M, Pearl S, Kabaha MM, Elboher E, Tzfati Y. 2007. A critical three-way junction is conserved in budding yeast and vertebrate telomerase RNAs. Nucleic Acids Res 35:6280–6289. http://dx.doi.org/10.1093/nar/gkm713.
  • Zappulla DC, Goodrich K, Cech TR. 2005. A miniature yeast telomerase RNA functions in vivo and reconstitutes activity in vitro. Nat Struct Mol Biol 12:1072–1077. http://dx.doi.org/10.1038/nsmb1019.
  • Livengood AJ, Zaug AJ, Cech TR. 2002. Essential regions of Saccharomyces cerevisiae telomerase RNA: separate elements for Est1p and Est2p interaction. Mol Cell Biol 22:2366–2374. http://dx.doi.org/10.1128/MCB.22.7.2366-2374.2002.
  • Mitchell JR, Cheng J, Collins K. 1999. A box H/ACA small nucleolar RNA-like domain at the human telomerase RNA 3′ end. Mol Cell Biol 19:567–576. http://dx.doi.org/10.1128/MCB.19.1.567.
  • Fu D, Collins K. 2003. Distinct biogenesis pathways for human telomerase RNA and H/ACA small nucleolar RNAs. Mol Cell 11:1361–1372. http://dx.doi.org/10.1016/S1097-2765(03)00196-5.
  • Seto AG, Zaug AJ, Sobel SG, Wolin SL, Cech TR. 1999. Saccharomyces cerevisiae telomerase is an Sm small nuclear ribonucleoprotein particle. Nature 401:177–180. http://dx.doi.org/10.1038/43694.
  • Miller MC, Collins K. 2002. Telomerase recognizes its template by using an adjacent RNA motif. Proc Natl Acad Sci U S A 99:6585–6590. http://dx.doi.org/10.1073/pnas.102024699.
  • Berman AJ, Akiyama BM, Stone MD, Cech TR. 2011. The RNA accordion model for template positioning by telomerase RNA during telomeric DNA synthesis. Nat Struct Mol Biol 18:1371–1375. http://dx.doi.org/10.1038/nsmb.2174.
  • Drosopoulos WC, Direnzo R, Prasad VR. 2005. Human telomerase RNA template sequence is a determinant of telomere repeat extension rate. J Biol Chem 280:32801–32810. http://dx.doi.org/10.1074/jbc.M506319200.
  • Parks JW, Stone MD. 2014. Coordinated DNA dynamics during the human telomerase catalytic cycle. Nat Commun 5:4146. http://dx.doi.org/10.1038/ncomms5146.
  • Chen JL, Greider CW. 2003. Determinants in mammalian telomerase RNA that mediate enzyme processivity and cross-species incompatibility. EMBO J 22:304–314. http://dx.doi.org/10.1093/emboj/cdg024.
  • Zaug AJ, Crary SM, Jesse Fioravanti M, Campbell K, Cech TR. 2013. Many disease-associated variants of hTERT retain high telomerase enzymatic activity. Nucleic Acids Res 41:8969–8978. http://dx.doi.org/10.1093/nar/gkt653.
  • Egan ED, Collins K. 2012. An enhanced H/ACA RNP assembly mechanism for human telomerase RNA. Mol Cell Biol 32:2428–2439. http://dx.doi.org/10.1128/MCB.00286-12.
  • Niederer RO, Zappulla DC. 2015. Refined secondary-structure models of the core of yeast and human telomerase RNAs directed by SHAPE. RNA 21:1053.
  • Theimer CA, Blois CA, Feigon J. 2005. Structure of the human telomerase RNA pseudoknot reveals conserved tertiary interactions essential for function. Mol Cell 17:671–682. http://dx.doi.org/10.1016/j.molcel.2005.01.017.
  • Zhang Q, Kim NK, Peterson RD, Wang Z, Feigon J. 2010. Structurally conserved five nucleotide bulge determines the overall topology of the core domain of human telomerase RNA. Proc Natl Acad Sci U S A 107:18761–18768. http://dx.doi.org/10.1073/pnas.1013269107.
  • Chen JL, Greider CW. 2005. Functional analysis of the pseudoknot structure in human telomerase RNA. Proc Natl Acad Sci U S A 102:8080–8089. http://dx.doi.org/10.1073/pnas.0502259102.
  • Vulliamy T, Marrone A, Goldman F, Dearlove A, Bessler M, Mason PJ, Dokal I. 2001. The RNA component of telomerase is mutated in autosomal dominant dyskeratosis congenita. Nature 413:432–435. http://dx.doi.org/10.1038/35096585.
  • Huang J, Brown AF, Wu J, Xue J, Bley CJ, Rand DP, Wu L, Zhang R, Chen JJ, Lei M. 2014. Structural basis for protein-RNA recognition in telomerase. Nat Struct Mol Biol 21:507–512. http://dx.doi.org/10.1038/nsmb.2819.
  • Chen JL, Opperman KK, Greider CW. 2002. A critical stem-loop structure in the CR4-CR5 domain of mammalian telomerase RNA. Nucleic Acids Res 30:592–597. http://dx.doi.org/10.1093/nar/30.2.592.
  • Robart AR, Collins K. 2010. Investigation of human telomerase holoenzyme assembly, activity, and processivity using disease-linked subunit variants. J Biol Chem 285:4375–4386. http://dx.doi.org/10.1074/jbc.M109.088575.
  • Booy EP, Meier M, Okun N, Novakowski SK, Xiong S, Stetefeld J, McKenna SA. 2012. The RNA helicase RHAU (DHX36) unwinds a G4-quadruplex in human telomerase RNA and promotes the formation of the P1 helix template boundary. Nucleic Acids Res 40:4110–4124. http://dx.doi.org/10.1093/nar/gkr1306.
  • Chen JL, Blasco MA, Greider CW. 2000. Secondary structure of vertebrate telomerase RNA. Cell 100:503–514. http://dx.doi.org/10.1016/S0092-8674(00)80687-X.
  • Wu RA, Collins K. 2014. Human telomerase specialization for repeat synthesis by unique handling of primer-template duplex. EMBO J 33:921–935. http://dx.doi.org/10.1002/embj.201387205.
  • Bosoy D, Lue NF. 2004. Yeast telomerase is capable of limited repeat addition processivity. Nucleic Acids Res 32:93–101. http://dx.doi.org/10.1093/nar/gkg943.
  • Cohn M, Blackburn EH. 1995. Telomerase in yeast. Science 269:396–400. http://dx.doi.org/10.1126/science.7618104.
  • Martadinata H, Phan AT. 2014. Formation of a stacked dimeric G-quadruplex containing bulges by the 5′-terminal region of human telomerase RNA (hTERC). Biochemistry 53:1595–1600. http://dx.doi.org/10.1021/bi4015727.
  • Zvereva MI, Zatsepin TS, Azhibek DM, Shubernetskaya OS, Shpanchenko OV, Dontsova OA. 2015. Oligonucleotide inhibitors of telomerase: prospects for anticancer therapy and diagnostics. Biochemistry 80:251–259. http://dx.doi.org/10.1134/S0006297915030013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.