116
Views
66
CrossRef citations to date
0
Altmetric
Article

Uncoupling Stress-Inducible Phosphorylation of Heat Shock Factor 1 from Its Activation

, , &
Pages 2530-2540 | Received 03 Aug 2014, Accepted 04 May 2015, Published online: 20 Mar 2023

REFERENCES

  • Anckar J, Sistonen L. 2011. Regulation of HSF1 function in the heat stress response: implications in aging and disease. Annu Rev Biochem 80:1089–1115. http://dx.doi.org/10.1146/annurev-biochem-060809-095203.
  • Richter K, Haslbeck M, Buchner J. 2010. The heat shock response: life on the verge of death. Mol Cell 40:253–266. http://dx.doi.org/10.1016/j.molcel.2010.10.006.
  • Hartl FU, Bracher A, Hayer-Hartl M. 2011. Molecular chaperones in protein folding and proteostasis. Nature 475:324–332. http://dx.doi.org/10.1038/nature10317.
  • Åkerfelt M, Morimoto RI, Sistonen L. 2010. Heat shock factors: integrators of cell stress, development, and life span. Nat Rev Mol Cell Biol 11:545–555. http://dx.doi.org/10.1038/nrm2938.
  • Amin J, Ananthan J, Voellmy R. 1988. Key features of heat shock regulatory elements. Mol Cell Biol 8:3761–3769.
  • Littlefield O, Nelson HCM. 1999. A new use for the ‘wing’ of the ‘winged’ helix-turn-helix motif in the HSF–DNA cocrystal. Nat Struct Mol Biol 6:464–470. http://dx.doi.org/10.1038/8269.
  • Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM. 2004. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15:1254–1261. http://dx.doi.org/10.1091/mbc.E03-10-0738.
  • Vihervaara A, Sergelius C, Vasara J, Blom MAH, Elsing AN, Roos-Mattjus P, Sistonen L. 2013. Transcriptional response to stress in the dynamic chromatin environment of cycling and mitotic cells. Proc Natl Acad Sci U S A 110:E3388–E3397. http://dx.doi.org/10.1073/pnas.1305275110.
  • McMillan DR, Xiao X, Shao L, Graves K, Benjamin IJ. 1998. Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273:7523–7528. http://dx.doi.org/10.1074/jbc.273.13.7523.
  • Xiao X, Zuo X, Davis AA, McMillan DR, Curry BB, Richardson JA, Benjamin IJ. 1999. HSF1 is required for extra-embryonic development, postnatal growth and protection during inflammatory responses in mice. EMBO J 18:5943–5952. http://dx.doi.org/10.1093/emboj/18.21.5943.
  • Christians E, Davis A, Thomas S, Benjamin I. 2000. Embryonic development: maternal effect of Hsf1 on reproductive success. Nature 407:693–694. http://dx.doi.org/10.1038/35037669.
  • Page TJ, Sikder D, Yang L, Pluta L, Wolfinger RD, Kodadek T, Thomas RS. 2006. Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mol Biosystems 2:627–639. http://dx.doi.org/10.1039/b606129j.
  • Hsu AL, Murphy CT, Kenyon C. 2003. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145. http://dx.doi.org/10.1126/science.1083701.
  • Morley JF, Morimoto RI. 2004. Regulation of longevity in Caenorhabditis elegans by heat shock factor and molecular chaperones. Mol Biol Cell 15:657–664. http://dx.doi.org/10.1091/mbc.E03-07-0532.
  • Steele AD, Hutter G, Jackson WS, Heppner FL, Borkowski AW, King OD, Raymond GJ, Aguzzi A, Lindquist S. 2008. Heat shock factor 1 regulates life span as distinct from disease onset in prion disease. Proc Natl Acad Sci U S A 105:13626–13631. http://dx.doi.org/10.1073/pnas.0806319105.
  • Inouye S, Izu H, Takaki E, Suzuki H, Shirai M, Yokota Y, Ichikawa H, Fujimoto M, Nakai A. 2004. Impaired IgG production in mice deficient for heat shock transcription factor 1. J Biol Chem 279:38701–38709. http://dx.doi.org/10.1074/jbc.M405986200.
  • Reinke H, Saini C, Fleury-Olela F, Dibner C, Benjamin IJ, Schibler U. 2008. Differential display of DNA-binding proteins reveals heat-shock factor 1 as a circadian transcription factor. Genes Dev 22:331–345. http://dx.doi.org/10.1101/gad.453808.
  • Dai C, Whitesell L, Rogers AB, Lindquist S. 2007. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 130:1005–1018. http://dx.doi.org/10.1016/j.cell.2007.07.020.
  • Santagata S, Hu R, Lin NU, Mendillo ML, Collins LC, Hankinson SE, Schnitt SJ, Whitesell L, Tamimi RM, Lindquist S, Ince TA. 2011. High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc Natl Acad Sci U S A 108:18378–18383. http://dx.doi.org/10.1073/pnas.1115031108.
  • Mendillo ML, Santagata S, Koeva M, Bell GW, Hu R, Tamimi RM, Fraenkel E, Ince TA, Whitesell L, Lindquist S. 2012. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 150:549–562. http://dx.doi.org/10.1016/j.cell.2012.06.031.
  • Vuister GW, Kim S, Orosz A, Marquardt J, Wu C, Bax A. 1994. Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor. Nat Struct Biol 1:605–614. http://dx.doi.org/10.1038/nsb0994-605.
  • Newton EM, Knauf U, Green M, Kingston RE. 1996. The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Mol Cell Biol 16:839–846.
  • Sorger PK, Nelson HCM. 1989. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59:807–813. http://dx.doi.org/10.1016/0092-8674(89)90604-1.
  • Peteranderl R, Nelson HCM. 1992. Trimerization of the heat shock transcription factor by a triple-stranded α-helical coiled coil. Biochemistry 31:12272–12276. http://dx.doi.org/10.1021/bi00163a042.
  • Rabindran SK, Haroun RI, Clos J, Wisniewski J, Wu C. 1993. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230–234. http://dx.doi.org/10.1126/science.8421783.
  • Zuo J, Rungger D, Voellmy R. 1995. Multiple layers of regulation of human heat shock transcription factor 1. Mol Cell Biol 15:4319–4330.
  • Green M, Schuetz TJ, Sullivan EK, Kingston RE. 1995. A heat shock-responsive domain of human HSF1 that regulates transcription activation domain function. Mol Cell Biol 15:3354–3362.
  • Takemori Y, Enoki Y, Yamamoto N, Fukai Y, Adachi K, Sakurai H. 2009. Mutational analysis of human heat-shock transcription factor 1 reveals a regulatory role for oligomerization in DNA-binding specificity. Biochem J 424:253–261. http://dx.doi.org/10.1042/BJ20090922.
  • Hietakangas V, Ahlskog JK, Jakobsson AM, Hellesuo M, Sahlberg NM, Holmberg CI, Mikhailov A, Palvimo JJ, Pirkkala L, Sistonen L. 2003. Phosphorylation of serine 303 is a prerequisite for the stress-inducible SUMO modification of heat shock factor 1. Mol Cell Biol 23:2953–2968. http://dx.doi.org/10.1128/MCB.23.8.2953-2968.2003.
  • Guettouche T, Boellmann F, Lane WS, Voellmy R. 2005. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 6:4. http://dx.doi.org/10.1186/1471-2091-6-4.
  • Westerheide SD, Anckar J, Stevens SM, Jr, Sistonen L, Morimoto RI. 2009. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066. http://dx.doi.org/10.1126/science.1165946.
  • Raychaudhuri S, Loew C, Körner R, Pinkert S, Theis M, Hayer-Hartl M, Buchholz F, Hartl FU. 2014. Interplay of acetyltransferase EP300 and the proteasome system in regulating heat shock transcription factor 1. Cell 156:975–985. http://dx.doi.org/10.1016/j.cell.2014.01.055.
  • Xu YM, Huang DY, Chiu JF, Lau AT. 2012. Post-translational modification of human heat shock factors and their functions: a recent update by proteomic approach. J Proteome Res 11:2625–2634. http://dx.doi.org/10.1021/pr201151a.
  • Knauf U, Newton EM, Kyriakis J, Kingston RE. 1996. Repression of human heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev 10:2782–2793. http://dx.doi.org/10.1101/gad.10.21.2782.
  • Kline MP, Morimoto RI. 1997. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17:2107–2115.
  • Chu B, Zhong R, Soncin F, Stevenson MA, Calderwood SK. 1998. Transcriptional activity of heat shock factor 1 at 37°C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinases Cα and Cζ. J Biol Chem 273:18640–18646. http://dx.doi.org/10.1074/jbc.273.29.18640.
  • Holmberg CI, Tran SE, Eriksson JE, Sistonen L. 2002. Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 27:619–627. http://dx.doi.org/10.1016/S0968-0004(02)02207-7.
  • Xia W, Voellmy R. 1997. Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J Biol Chem 272:4094–4102. http://dx.doi.org/10.1074/jbc.272.7.4094.
  • Cotto JJ, Kline M, Morimoto RI. 1996. Activation of heat shock factor 1 DNA binding precedes stress-induced serine phosphorylation. Evidence for a multistep pathway of regulation. J Biol Chem 271:3355–3358.
  • Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M, Meinander A, Hellman J, Morrice N, MacKintosh C, Morimoto RI, Eriksson JE, Sistonen L. 2001. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J 20:3800–3810. http://dx.doi.org/10.1093/emboj/20.14.3800.
  • Wang J, Yao M, Gu J, Sun L, Shen Y, Liu X. 2002. Blocking HSF1 by dominant-negative mutant to sensitize tumor cells to hyperthermia. Biochem Biophys Res Commun 290:1454–1461. http://dx.doi.org/10.1006/bbrc.2002.6373.
  • Boellmann F, Guettouche T, Guo Y, Fenna M, Mnayer L, Voellmy R. 2004. DAXX interacts with heat shock factor 1 during stress activation and enhances its transcriptional activity. Proc Natl Acad Sci U S A 101:4100–4105. http://dx.doi.org/10.1073/pnas.0304768101.
  • Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. 2009. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991. http://dx.doi.org/10.1146/annurev.biochem.052308.114844.
  • Calamini B, Morimoto RI. 2012. Protein homeostasis as a therapeutic target for diseases of protein conformation. Curr Top Med Chem 12:2623–2640. http://dx.doi.org/10.2174/1568026611212220014.
  • Westerheide SD, Morimoto RI. 2005. Heat shock response modulators as therapeutic tools for diseases of protein conformation. J Biol Chem 280:33097–33100. http://dx.doi.org/10.1074/jbc.R500010200.
  • Neef DW, Turski ML, Thiele DJ. 2010. Modulation of heat shock transcription factor 1 as a therapeutic target for small molecule intervention in neurodegenerative disease. PLoS Biol 8:e1000291. http://dx.doi.org/10.1371/journal.pbio.1000291.
  • Calamini B, Silva MC, Madoux F, Hutt DM, Khanna S, Chalfant MA, Saldanha SA, Hodder P, Tait BD, Garza D, Balch WE, Morimoto RI. 2012. Small-molecule proteostasis regulators for protein conformational diseases. Nat Chem Biol 8:185–196. http://dx.doi.org/10.1038/nchembio.763.
  • West JD, Wang Y, Morano KA. 2012. Small molecule activators of the heat shock response: chemical properties, molecular targets, and therapeutic promise. Chem Res Toxicol 25:2036–2053. http://dx.doi.org/10.1021/tx300264x.
  • Sadowski I, Ma J, Triezenberg S, Ptashne M. 1988. GAL4-VP16 is an unusually potent transcriptional activator. Nature 335:563–564. http://dx.doi.org/10.1038/335563a0.
  • Mosser DD, Theodorakis NG, Morimoto RI. 1988. Coordinate changes in heat shock element-binding activity and HSP70 gene transcription rates in human cells. Mol Cell Biol 8:4736–4744.
  • Holmberg CI, Illman SA, Kallio M, Mikhailov A, Sistonen L. 2000. Formation of nuclear HSF1 granules varies depending on stress stimuli. Cell Stress Chaperones 5:219–228. http://dx.doi.org/10.1379/1466-1268(2000)005<0219:FONHGV>2.0.CO;2.
  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. http://dx.doi.org/10.1038/nmeth.2019.
  • Sarge KD, Murphy SP, Morimoto RI. 1993. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407.
  • Zhuo S, Clemens JC, Hakes DJ, Barford D, Dixon JE. 1993. Expression, purification, crystallization, and biochemical characterization of a recombinant protein phosphatase. J Biol Chem 268:17754–17761.
  • Moll UM, Petrenko O. 2003. The MDM2-p53 interaction. Mol Cancer Res 1:1001–1008.
  • Appella E, Anderson CW. 2001. Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772. http://dx.doi.org/10.1046/j.1432-1327.2001.02225.x.
  • Vousden KH. 2002. Activation of the p53 tumor suppressor protein. Biochim Biophys Acta 1602:47–59. http://dx.doi.org/10.1016/S0304-419X(02)00035-5.
  • Poizat C, Puri PL, Bai Y, Kedes L. 2005. Phosphorylation-dependent degradation of p300 by doxorubicin-activated p38 mitogen-activated protein kinase in cardiac cells. Mol Cell Biol 25:2673–2687. http://dx.doi.org/10.1128/MCB.25.7.2673-2687.2005.
  • Obrig TG, Culp WJ, McKeehan WL, Hardesty B. 1971. The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes. J Biol Chem 246:174–181.
  • Mathew A, Mathur SK, Morimoto RI. 1998. Heat shock response and protein degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol Cell Biol 18:5091–5098.
  • Ahlskog JK, Björk JK, Elsing AN, Aspelin C, Kallio M, Roos-Mattjus P, Sistonen L. 2010. Anaphase-promoting complex/cyclosome participates in the acute response to protein-damaging stress. Mol Cell Biol 30:5608–5620. http://dx.doi.org/10.1128/MCB.01506-09.
  • Cotto J, Fox S, Morimoto RI. 1997. HSF1 granules: a novel stress-induced nuclear compartment of human cells. J Cell Sci 110:2925–2934.
  • Jolly C, Morimoto RI, Robert-Nicoud M, Vourc'h C. 1997. HSF1 transcription factor concentrates in nuclear foci during heat shock: relationship with transcription sites. J Cell Sci 110:2935–2941.
  • Wang X, Grammatikakis N, Siganou A, Calderwood SK. 2003. Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14-3-3 epsilon binding, and cytoplasmic sequestration of heat shock factor 1. Mol Cell Biol 23:6013–6026. http://dx.doi.org/10.1128/MCB.23.17.6013-6026.2003.
  • Murshid A, Chou S, Prince T, Zhang Y, Bharti A, Calderwood SK. 2010. Protein kinase A binds and activates heat shock factor 1. PLoS One 5:e13830. http://dx.doi.org/10.1371/journal.pone.0013830.
  • Biamonti G, Vourc'h C. 2010. Nuclear stress bodies. Cold Spring Harb Perspect Biol 2:a000695. http://dx.doi.org/10.1101/cshperspect.a000695.
  • Alastalo TP, Hellesuo M, Sandqvist A, Hietakangas V, Kallio M, Sistonen L. 2003. Formation of nuclear stress granules involves HSF2 and coincides with the nucleolar localization of Hsp70. J Cell Sci 116:3557–3570. http://dx.doi.org/10.1242/jcs.00671.
  • Murata M, Gong P, Suzuki K, Koizumi S. 1999. Differential metal response and regulation of human heavy metal-inducible genes. J Cell Physiol 180:105–113. http://dx.doi.org/10.1002/(SICI)1097-4652(199907)180:1<105::AID-JCP12>3.0.CO;2-5.
  • Wang S, Diller KR, Aggarwal SJ. 2003. Kinetics study of endogenous heat shock protein 70 expression. J Biomech Eng 125:794–797. http://dx.doi.org/10.1115/1.1632522.
  • Shinkawa T, Tan K, Fujimoto M, Hayashida N, Yamamoto K, Takaki E, Takii R, Prakasam R, Inouye S, Mezger V, Nakai A. 2011. Heat shock factor 2 is required for maintaining proteostasis against febrile-range thermal stress and polyglutamine aggregation. Mol Biol Cell 22:3571–3583. http://dx.doi.org/10.1091/mbc.E11-04-0330.
  • Chou SD, Murshid A, Eguchi T, Gong J, Calderwood SK. 2015. HSF1 regulation of beta-catenin in mammary cancer cells through control of HuR/elavL1 expression. Oncogene 34:2178–2188. http://dx.doi.org/10.1038/onc.2014.177.
  • Rossi A, Riccio A, Coccia M, Trotta E, La Frazia S, Santoro MG. 2014. The proteasome inhibitor bortezomib is a potent inducer of zinc-finger AN1-type domain 2a gene expression: role of HSF1/HSF2 heterocomplexes. J Biol Chem 289:12705–12715. http://dx.doi.org/10.1074/jbc.M113.513242.
  • El Fatimy R, Miozzo F, Le Mouel A, Abane R, Schwendimann L, Saberan-Djoneidi D, de Thonel A, Massaoudi I, Paslaru L, Hashimoto-Torii K, Christians E, Rakic P, Gressens P, Mezger V. 2014. Heat shock factor 2 is a stress-responsive mediator of neuronal migration defects in models of fetal alcohol syndrome. EMBO Mol Med 6:1043–1061. http://dx.doi.org/10.15252/emmm.201303311.
  • Elsing AN, Aspelin C, Björk JK, Bergman HA, Himanen SV, Kallio MJ, Roos-Mattjus P, Sistonen L. 2014. Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival. J Cell Biol 206:735–749. http://dx.doi.org/10.1083/jcb.201402002.
  • Hunter T, Karin M. 1992. The regulation of transcription by phosphorylation. Cell 70:375–387. http://dx.doi.org/10.1016/0092-8674(92)90162-6.
  • Sprang S, Acharya K, Goldsmith E, Stuart D, Varvill K, Fletterick R, Madsen N, Johnson L. 1988. Structural changes in glycogen phosphorylase induced by phosphorylation. Nature 336:215–221. http://dx.doi.org/10.1038/336215a0.
  • Hurley JH, Dean AM, Sohl JL, Koshland DE, Jr, Stroud RM. 1990. Regulation of an enzyme by phosphorylation at the active site. Science 249:1012–1016. http://dx.doi.org/10.1126/science.2204109.
  • Corey LL, Weirich CS, Benjamin IJ, Kingston RE. 2003. Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev 17:1392–1401. http://dx.doi.org/10.1101/gad.1071803.
  • Park JM, Werner J, Kim JM, Lis JT, Kim Y. 2001. Mediator, not holoenzyme, is directly recruited to the heat shock promoter by HSF upon heat shock. Mol Cell 8:9–19. http://dx.doi.org/10.1016/S1097-2765(01)00296-9.
  • Yuan C, Gurley WB. 2000. Potential targets for HSF1 within the preinitiation complex. Cell Stress Chaperones 5:229–242. http://dx.doi.org/10.1379/1466-1268(2000)005<0229:PTFHWT>2.0.CO;2.
  • Fujimoto M, Takaki E, Takii R, Tan K, Prakasam R, Hayashida N, Iemura S, Natsume T, Nakai A. 2012. RPA assists HSF1 access to nucleosomal DNA by recruiting histone chaperone FACT. Mol Cell 48:182–194. http://dx.doi.org/10.1016/j.molcel.2012.07.026.
  • Filtz TM, Vogel WK, Leid M. 2014. Regulation of transcription factor activity by interconnected posttranslational modifications. Trends Pharmacol Sci 35:76–85. http://dx.doi.org/10.1016/j.tips.2013.11.005.
  • Singleton KD, Wischmeyer PE. 2008. Glutamine induces heat shock protein expression via O-glycosylation and phosphorylation of HSF-1 and Sp1. J Parent Enteral Nutr 32:371–376. http://dx.doi.org/10.1177/0148607108320661.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.