41
Views
163
CrossRef citations to date
0
Altmetric
Article

Identification of Candidate Angiogenic Inhibitors Processed by Matrix Metalloproteinase 2 (MMP-2) in Cell-Based Proteomic Screens: Disruption of Vascular Endothelial Growth Factor (VEGF)/Heparin Affin Regulatory Peptide (Pleiotrophin) and VEGF/Connective Tissue Growth Factor Angiogenic Inhibitory Complexes by MMP-2 Proteolysis

, , , , , & show all
Pages 8454-8465 | Received 09 May 2007, Accepted 05 Sep 2007, Published online: 27 Mar 2023

REFERENCES

  • Amthor, H., G. Nicholas, I. McKinnell, C. F. Kemp, M. Sharma, R. Kambadur, and K. Patel. 2004. Follistatin complexes myostatin and antagonises myostatin-mediated inhibition of myogenesis. Dev. Biol. 270:19–30.
  • Anand-Apte, B., M. S. Pepper, E. Voest, R. Montesano, B. Olsen, G. Murphy, S. S. Apte, and B. Zetter. 1997. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase-3. Investig. Ophthalmol. Vis. Sci. 38:817–823.
  • Bach, L. A. 2005. IGFBP-6 five years on; not so ‘forgotten’? Growth Horm. IGF Res. 15:185–192.
  • Balbin, M., A. Fueyo, A. M. Tester, A. M. Pendas, A. S. Pitiot, A. Astudillo, C. M. Overall, S. D. Shapiro, and C. Lopez-Otín. 2003. Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nat. Genet. 35:252–257.
  • Ball, D. K., A. W. Rachfal, S. A. Kemper, and D. R. Brigstock. 2003. The heparin-binding 10 kDa fragment of connective tissue growth factor (CTGF) containing module 4 alone stimulates cell adhesion. J. Endocrinol. 176:R1–R7.
  • Bergers, G., R. Brekken, G. McMahon, T. H. Vu, T. Itoh, K. Tamaki, K. Tanzawa, P. Thorpe, S. Itohara, Z. Werb, and D. Hanahan. 2000. Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat. Cell Biol. 2:737–744.
  • Bergers, G., D. Hanahan, and L. M. Coussens. 1998. Angiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis. Int. J. Dev. Biol. 42:995–1002.
  • Bernard-Pierrot, I., J. Delbe, D. Caruelle, D. Barritault, J. Courty, and P. E. Milhiet. 2001. The lysine-rich C-terminal tail of heparin affin regulatory peptide is required for mitogenic and tumor formation activities. J. Biol. Chem. 276:12228–12234.
  • Bernard-Pierrot, I., M. Heroult, G. Lemaitre, D. Barritault, J. Courty, and P. E. Milhiet. 1999. Glycosaminoglycans promote HARP/PTN dimerization. Biochem. Biophys. Res. Commun. 266:437–442.
  • Bode, W., R. Engh, D. Musil, U. Thiele, R. Huber, A. Karshikov, J. Brzin, J. Kos, and V. Turk. 1988. The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 7:2593–2599.
  • Butler, G. S., E. M. Tam, and C. M. Overall. 2004. The canonical methionine 392 of matrix metalloproteinase 2 (gelatinase A) is not required for catalytic efficiency or structural integrity: probing the role of the methionine-turn in the metzincin metalloprotease superfamily. J. Biol. Chem. 279:15615–15620.
  • Chambers, A. F., and L. M. Matrisian. 1997. Changing views of the role of matrix metalloproteinases in metastasis. J. Natl. Cancer Inst. 89:1260–1270.
  • Chauhan, A. K., Y. S. Li, and T. F. Deuel. 1993. Pleiotrophin transforms NIH 3T3 cells and induces tumors in nude mice. Proc. Natl. Acad. Sci. USA 90:679–682.
  • Chun, T. H., F. Sabeh, I. Ota, H. Murphy, K. T. McDonagh, K. Holmbeck, H. Birkedal-Hansen, E. D. Allen, and S. J. Weiss. 2004. MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J. Cell Biol. 167:757–767.
  • Colnot, C., Z. Thompson, T. Miclau, Z. Werb, and J. A. Helms. 2003. Altered fracture repair in the absence of MMP9. Development 130:4123–4133.
  • Cornelius, L. A., L. C. Nehring, E. Harding, M. Bolanowski, H. G. Welgus, D. K. Kobayashi, R. A. Pierce, and S. D. Shapiro. 1998. Matrix metalloproteinases generate angiostatin: effects on neovascularization. J. Immunol. 161:6845–6852.
  • Czubayko, F., A. M. Schulte, G. J. Berchem, and A. Wellstein. 1996. Melanoma angiogenesis and metastasis modulated by ribozyme targeting of the secreted growth factor pleiotrophin. Proc. Natl. Acad. Sci. USA 93:14753–14758.
  • Dean, R. A., and C. M. Overall. 2007. Proteomics discovery of metalloproteinase substrates in the cellular context by iTRAQ™ labeling reveals a diverse MMP-2 substrate degradome. Mol. Cell. Proteomics 6:611–623.
  • Dvorak, H. F., L. F. Brown, M. Detmar, and A. M. Dvorak. 1995. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146:1029–1039.
  • Egeblad, M., and Z. Werb. 2002. New functions for the matrix metalloproteinases in cancer progression. Nat. Rev. Cancer 2:161–174.
  • Fowlkes, J. L., K. M. Thrailkill, D. M. Serra, K. Suzuki, and H. Nagase. 1995. Matrix metalloproteinases as insulin-like growth factor binding protein-degrading proteinases. Prog. Growth Factor Res. 6:255–263.
  • Frazier, K., S. Williams, D. Kothapalli, H. Klapper, and G. R. Grotendorst. 1996. Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. J. Investig. Dermatol. 107:404–411.
  • Gupta, G. P., D. X. Nguyen, A. C. Chiang, P. D. Bos, J. Y. Kim, C. Nadal, R. R. Gomis, K. Manova-Todorova, and J. Massague. 2007. Mediators of vascular remodelling co-opted for sequential steps in lung metastasis. Nature 446:765–770.
  • Gygi, S. P., B. Rist, S. A. Gerber, F. Turecek, M. H. Gelb, and R. Aebersold. 1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17:994–999.
  • Hamano, Y., M. Zeisberg, H. Sugimoto, J. C. Lively, Y. Maeshima, C. Yang, R. O. Hynes, Z. Werb, A. Sudhakar, and R. Kalluri. 2003. Physiological levels of tumstatin, a fragment of collagen IV alpha3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via αV β3 integrin. Cancer Cell 3:589–601.
  • Hashimoto, G., I. Inoki, Y. Fujii, T. Aoki, E. Ikeda, and Y. Okada. 2002. Matrix metalloproteinases cleave connective tissue growth factor and reactivate angiogenic activity of vascular endothelial growth factor 165. J. Biol. Chem. 277:36288–36295.
  • Heljasvaara, R., P. Nyberg, J. Luostarinen, M. Parikka, P. Heikkila, M. Rehn, T. Sorsa, T. Salo, and T. Pihlajaniemi. 2005. Generation of biologically active endostatin fragments from human collagen XVIII by distinct matrix metalloproteases. Exp. Cell Res. 307:292–304.
  • Heroult, M., I. Bernard-Pierrot, J. Delbe, Y. Hamma-Kourbali, P. Katsoris, D. Barritault, E. Papadimitriou, J. Plouet, and J. Courty. 2004. Heparin affin regulatory peptide binds to vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. Oncogene 23:1745–1753.
  • Herren, B., B. Levkau, E. W. Raines, and R. Ross. 1998. Cleavage of beta-catenin and plakoglobin and shedding of VE-cadherin during endothelial apoptosis: evidence for a role for caspases and metalloproteinases. Mol. Biol. Cell 9:1589–1601.
  • Houghton, A. M., J. L. Grisolano, M. L. Baumann, D. K. Kobayashi, R. D. Hautamaki, L. C. Nehring, L. A. Cornelius, and S. D. Shapiro. 2006. Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res. 66:6149–6155.
  • Inoki, I., T. Shiomi, G. Hashimoto, H. Enomoto, H. Nakamura, K. Makino, E. Ikeda, S. Takata, K. Kobayashi, and Y. Okada. 2002. Connective tissue growth factor binds vascular endothelial growth factor (VEGF) and inhibits VEGF-induced angiogenesis. FASEB J. 16:219–221.
  • Itoh, T., M. Tanioka, H. Yoshida, T. Yoshioka, H. Nishimoto, and S. Itohara. 1998. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 58:1048–1051.
  • Johnson, M. D., H. R. Kim, L. Chesler, G. Tsao-Wu, N. Bouck, and P. J. Polverini. 1994. Inhibition of angiogenesis by tissue inhibitor of metalloproteinase. J. Cell. Physiol. 160:194–202.
  • Kadomatsu, K., M. Tomomura, and T. Muramatsu. 1988. cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis. Biochem. Biophys. Res. Commun. 151:1312–1318.
  • Kato, T., T. Kure, J. H. Chang, E. E. Gabison, T. Itoh, S. Itohara, and D. T. Azar. 2001. Diminished corneal angiogenesis in gelatinase A-deficient mice. FEBS Lett. 508:187–190.
  • Kim, E. J., B. S. Schaffer, Y. H. Kang, R. G. Macdonald, and J. H. Park. 2002. Decreased production of insulin-like growth factor-binding protein (IGFBP)-6 by transfection of colon cancer cells with an antisense IGFBP-6 cDNA construct leads to stimulation of cell proliferation. J Gastroenterol. Hepatol. 17:563–570.
  • Kulasingam, V., and E. P. Diamandis. 25 July 2007, posting date. Proteomic analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets. Mol. Cell. Proteomics [Epub ahead of print.] https://doi.org/10.1074/mcp.M600465-MCP200.
  • Laaroubi, K., F. Vacherot, J. Delbe, D. Caruelle, D. Barritault, and J. Courty. 1995. Biochemical and mitogenic properties of the heparin-binding growth factor HARP. Prog. Growth Factor Res. 6:25–34.
  • Lambert, V., B. Wielockx, C. Munaut, C. Galopin, M. Jost, T. Itoh, Z. Werb, A. Baker, C. Libert, H. W. Krell, J. M. Foidart, A. Noel, and J. M. Rakic. 2003. MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J. 17:2290–2292.
  • Lee, S., S. M. Jilani, G. V. Nikolova, D. Carpizo, and M. L. Iruela-Arispe. 2005. Processing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J. Cell Biol. 169:681–691.
  • Leung, D. W., G. Cachianes, W. J. Kuang, D. V. Goeddel, and N. Ferrara. 1989. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246:1306–1309.
  • Li, J., Y. P. Zhang, and R. S. Kirsner. 2003. Angiogenesis in wound repair: angiogenic growth factors and the extracellular matrix. Microsc. Res. Tech. 60:107–114.
  • Liu, S., L. Wang, W. Wang, J. Lin, J. Han, H. Sun, H. Guo, R. Sun, and Q. Wu. 2006. TSC-36/FRP inhibits vascular smooth muscle cell proliferation and migration. Exp. Mol. Pathol. 80:132–140.
  • Lopez-Otín, C., and C. M. Overall. 2002. Protease degradomics: a new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 3:509–519.
  • Lozonschi, L., M. Sunamura, M. Kobari, S. Egawa, L. Ding, and S. Matsuno. 1999. Controlling tumor angiogenesis and metastasis of C26 murine colon adenocarcinoma by a new matrix metalloproteinase inhibitor, KB-R7785, in two tumor models. Cancer Res. 59:1252–1258.
  • Macotela, Y., M. B. Aguilar, J. Guzman-Morales, J. C. Rivera, C. Zermeno, F. Lopez-Barrera, G. Nava, C. Lavalle, G. M. de la Escalera, and C. Clapp. 2006. Matrix metalloproteases from chondrocytes generate an antiangiogenic 16 kDa prolactin. J. Cell Sci. 119:1790–1800.
  • Martin, D. B., D. R. Gifford, M. E. Wright, A. Keller, E. Yi, D. R. Goodlett, R. Aebersold, and P. S. Nelson. 2004. Quantitative proteomic analysis of proteins released by neoplastic prostate epithelium. Cancer Res. 64:347–355.
  • Mashimo, J., R. Maniwa, H. Sugino, and K. Nose. 1997. Decrease in the expression of a novel TGF beta1-inducible and ras-recision gene, TSC-36, in human cancer cells. Cancer Lett. 113:213–219.
  • Masood, R., J. Cai, T. Zheng, D. L. Smith, D. R. Hinton, and P. S. Gill. 2001. Vascular endothelial growth factor (VEGF) is an autocrine growth factor for VEGF receptor-positive human tumors. Blood 98:1904–1913.
  • McCawley, L. J., and L. M. Matrisian. 2001. Matrix metalloproteinases: they're not just for matrix anymore! Curr. Opin. Cell Biol. 13:534–540.
  • McQuibban, G. A., J. H. Gong, E. M. Tam, C. A. McCulloch, I. Clark-Lewis, and C. M. Overall. 2000. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science 289:1202–1206.
  • Minn, A. J., G. P. Gupta, P. M. Siegel, P. D. Bos, W. Shu, D. D. Giri, A. Viale, A. B. Olshen, W. L. Gerald, and J. Massague. 2005. Genes that mediate breast cancer metastasis to lung. Nature 436:518–524.
  • Miyamae, T., A. D. Marinov, D. Sowders, D. C. Wilson, J. Devlin, R. Boudreau, P. Robbins, and R. Hirsch. 2006. Follistatin-like protein-1 is a novel proinflammatory molecule. J. Immunol. 177:4758–4762.
  • Morrison, C. J., G. S. Butler, H. F. Bigg, C. R. Roberts, P. D. Soloway, and C. M. Overall. 2001. Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J. Biol. Chem. 276:47402–47410.
  • Moussad, E. E., and D. R. Brigstock. 2000. Connective tissue growth factor: what's in a name? Mol. Genet. Metab. 71:276–292.
  • Nagase, H., and J. F. Woessner, Jr. 1999. Matrix metalloproteinases. J. Biol. Chem. 274:21491–21494.
  • Nishizuka, I., Y. Ichikawa, T. Ishikawa, M. Kamiyama, S. Hasegawa, N. Momiyama, K. Miyazaki, and H. Shimada. 2001. Matrilysin stimulates DNA synthesis of cultured vascular endothelial cells and induces angiogenesis in vivo. Cancer Lett. 173:175–182.
  • Ohno-Matsui, K., T. Uetama, T. Yoshida, M. Hayano, T. Itoh, I. Morita, and M. Mochizuki. 2003. Reduced retinal angiogenesis in MMP-2-deficient mice. Investig. Ophthalmol. Vis. Sci. 44:5370–5375.
  • Ortega, N., D. J. Behonick, C. Colnot, D. N. Cooper, and Z. Werb. 2005. Galectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation. Mol. Biol. Cell 16:3028–3039.
  • Overall, C. M., and C. P. Blobel. 2007. In search of partners: linking extracellular proteases to substrates. Nat. Rev. Mol. Cell Biol. 8:245–257.
  • Overall, C. M., and R. A. Dean. 2006. Degradomics: systems biology of the protease web. Pleiotropic roles of MMPs in cancer. Cancer Metastasis Rev. 25:69–75.
  • Overall, C. M., and O. Kleifeld. 2006. Validating matrix metalloproteinases as drug targets and anti-targets for cancer therapy. Nat. Rev. Cancer 6:227–239.
  • Overall, C. M., and J. Sodek. 1990. Concanavalin A produces a matrix-degradative phenotype in human fibroblasts. Induction and endogenous activation of collagenase, 72-kDa gelatinase, and Pump-1 is (sic) accompanied by the suppression of the tissue inhibitor of matrix metalloproteinases. J. Biol. Chem. 265:21141–21151.
  • Page-McCaw, A., A. J. Ewald, and Z. Werb. 2007. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8:221–233.
  • Papadimitriou, E., M. Heroult, J. Courty, A. Polykratis, C. Stergiou, and P. Katsoris. 2000. Endothelial cell proliferation induced by HARP: implication of N or C terminal peptides. Biochem. Biophys. Res. Commun. 274:242–248.
  • Papadimitriou, E., A. Polykratis, J. Courty, P. Koolwijk, M. Heroult, and P. Katsoris. 2001. HARP induces angiogenesis in vivo and in vitro: implication of N or C terminal peptides. Biochem. Biophys. Res. Commun. 282:306–313.
  • Park, J. E., G. A. Keller, and N. Ferrara. 1993. The vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol. Biol. Cell 4:1317–1326.
  • Polykratis, A., J. Delbe, J. Courty, E. Papadimitriou, and P. Katsoris. 2004. Identification of heparin affin regulatory peptide domains with potential role on angiogenesis. Int. J. Biochem. Cell Biol. 36:1954–1966.
  • Raza, S. L., and L. A. Cornelius. 2000. Matrix metalloproteinases: pro- and anti-angiogenic activities. J. Investig. Dermatol. Symp. Proc. 5:47–54.
  • Schilling, O., and C. M. Overall. 2007. Proteomic discovery of protease substrates. Curr. Opin. Chem. Biol. 11:36–45.
  • Stupack, D. G., and D. A. Cheresh. 2002. ECM remodeling regulates angiogenesis: endothelial integrins look for new ligands. Sci. STKE 2002:PE7.
  • Sumitomo, K., A. Kurisaki, N. Yamakawa, K. Tsuchida, E. Shimizu, S. Sone, and H. Sugino. 2000. Expression of a TGF-beta1 inducible gene, TSC-36, causes growth inhibition in human lung cancer cell lines. Cancer Lett. 155:37–46.
  • Taipale, J., and J. Keski-Oja. 1997. Growth factors in the extracellular matrix. FASEB J. 11:51–59.
  • Tam, E. M., C. J. Morrison, Y. I. Wu, M. S. Stack, and C. M. Overall. 2004. Membrane protease proteomics: isotope-coded affinity tag MS identification of undescribed MT1-matrix metalloproteinase substrates. Proc. Natl. Acad. Sci. USA 101:6917–6922.
  • Vu, T. H., J. M. Shipley, G. Bergers, J. E. Berger, J. A. Helms, D. Hanahan, S. D. Shapiro, R. M. Senior, and Z. Werb. 1998. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93:411–422.
  • Witty, J. P., T. Lempka, R. J. Coffey, Jr., and L. M. Matrisian. 1995. Decreased tumor formation in 7,12-dimethylbenzanthracene-treated stromelysin-1 transgenic mice is associated with alterations in mammary epithelial cell apoptosis. Cancer Res. 55:1401–1406.
  • Zhou, Z., S. S. Apte, R. Soininen, R. Cao, G. Y. Baaklini, R. W. Rauser, J. Wang, Y. Cao, and K. Tryggvason. 2000. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc. Natl. Acad. Sci. USA 97:4052–4057.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.