15
Views
44
CrossRef citations to date
0
Altmetric
Article

Novel Functions of Protein Arginine Methyltransferase 1 in Thyroid Hormone Receptor-Mediated Transcription and in the Regulation of Metamorphic Rate in Xenopus laevis

, , , &
Pages 745-757 | Received 22 May 2008, Accepted 20 Nov 2008, Published online: 21 Mar 2023

REFERENCES

  • Abramovich, C., B. Yakobson, J. Chebath, and M. Revel. 1997. A protein-arginine methyltransferase binds to the intracytoplasmic domain of the IFNAR1 chain in the type I interferon receptor. EMBO J. 16:260–266.
  • An, W., J. Kim, and R. G. Roeder. 2004. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell Res. 117:735–748.
  • Aoki, K., Y. Ishii, K. Matsumoto, and M. Tsujimoto. 2002. Methylation of Xenopus CIRP2 regulates its arginine- and glycine-rich region-mediated nucleocytoplasmic distribution. Nucleic Acids Res. 30:5182–5192.
  • Atkinson, B. G. 1994. Metamorphosis: model systems for studying gene expression in postembryonic development. Dev. Genet. 15:313–319.
  • Barrero, M. J., and S. Malik. 2006. Two functional modes of a nuclear receptor-recruited arginine methyltransferase in transcriptional activation. Mol. Cell 24:233–243.
  • Batut, J., L. Vandel, C. Leclerc, C. Daguzan, M. Moreau, and I. Néant. 2005. The Ca2+-induced methyltransferase xPRMT1b controls neural fate in amphibian embryo. Proc. Natl. Acad. Sci. USA 102:15128–15133.
  • Beck, C. W., B. Christen, and J. M. Slack. 2003. Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev. Cell 5:429–439.
  • Bedford, M. T., and S. Richard. 2005. Arginine methylation an emerging regulator of protein function. Mol. Cell 18:263–272.
  • Boisvert, F. M., J. Cote, M. C. Boulanger, and S. Richard. 2003. A proteomic analysis of arginine-methylated protein complexes. Mol. Cell. Proteomics 2:1319–1330.
  • Boisvert, F. M., U. Déry, J. Y. Masson, and S. Richard. 2005. Arginine methylation of MRE11 by PRMT1 is required for the intra-S-phase DNA damage checkpoint. Genes Dev. 19:671–676.
  • Boulanger, M.-C., T. B. Miranda, S. Clarke, M. Di Fruscio, B. Suter, P. Lasko, and S. Richard. 2004. Characterization of the Drosophila protein arginine methyltransferases DART1 and DART4. Biochem. J. 379:283–289.
  • Brahms, H., L. Meheus, V. de Brabandere, U. Fischer, and R. Lührmann. 2001. Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B′ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7:1531–1542.
  • Buchholz, D. R., V. S.-C. Hsia, L. Fu, and Y.-B. Shi. 2003. A dominant negative thyroid hormone receptor blocks amphibian metamorphosis by retaining corepressors at target genes. Mol. Cell. Biol. 23:6750–6758.
  • Buchholz, D. R., A. Ishizuya-Oka, and Y. B. Shi. 2004. Spatial and temporal expression pattern of a novel gene in the frog Xenopus laevis: correlations with adult intestinal epithelial differentiation during metamorphosis. Gene Expr. Patterns 4:321–328.
  • Buchholz, D. R., B. D. Paul, L. Fu, and Y. B. Shi. 2006. Molecular and developmental analyses of thyroid hormone receptor function in Xenopus laevis, the African clawed frog. Gen. Comp. Endocrinol. 145:1–19.
  • Buchholz, D. R., B. D. Paul, and Y. B. Shi. 2005. Gene-specific changes in promoter occupancy by thyroid hormone receptor during frog metamorphosis. Implications for developmental gene regulation. J. Biol. Chem. 280:41222–41228.
  • Buchholz, D. R., A. Tomita, L. Fu, B. D. Paul, and Y.-B. Shi. 2004. Transgenic analysis reveals that thyroid hormone receptor is sufficient to mediate the thyroid hormone signal in frog metamorphosis. Mol. Cell. Biol. 24:9026–9037.
  • Burke, L. J., and A. Baniahmad. 2000. Co-repressors 2000. FASEB J. 14:1876–1888.
  • Chen, D., H. Ma, H. Hong, S. S. Koh, S. M. Huang, B. T. Schurter, D. W. Aswad, and M. R. Stallcup. 1999. Regulation of transcription by a protein methyltransferase. Science 284:2174–2177.
  • Cheung, N., L. C. Chan, A. Thompson, M. L. Cleary, and C. W. E. So. 2007. Protein arginine-methyltransferase-dependent oncogenesis. Nat. Cell Biol. 9:1208–1215.
  • Côté, J., F. M. Boisvert, M.-C. Boulanger, M. T. Bedford, and S. Richard. 2003. Sam68 RNA binding protein is an in vivo substrate for protein arginine N-methyltransferase 1. Mol. Biol. Cell 14:274–287.
  • Daujat, S., U. M. Bauer, V. Shah, B. Turner, S. Berger, and T. Kouzarides. 2002. Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr. Biol. 12:2090–2097.
  • Dodd, M. H. I., and J. M. Dodd. 1976. The biology of metamorphosis, p. 467-599. In B. Lofts (ed.), Physiology of the amphibia. Academic Press, Inc., New York, NY.
  • El Messaoudi, S., E. Fabbrizio, C. Rodriguez, P. Chuchana, L. Fauquier, D. Cheng, C. Theillet, L. Vandel, M. T. Bedford, and C. Sardet. 2006. Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the Cyclin E1 gene. Proc. Natl. Acad. Sci. USA 103:13351–13356.
  • Fu, L., D. Buchholz, and Y.-B. Shi. 2002. A novel double promoter approach for identification of transgenic animals: a tool for in vivo analysis of gene function and development of gene-based therapies. Mol. Reprod. Dev. 62:470–476.
  • Fu, L., A. Ishizuya-Oka, D. R. Buchholz, T. Amano, H. Matsuda, and Y. B. Shi. 2005. A causative role of stromelysin-3 in extracellular matrix remodeling and epithelial apoptosis during intestinal metamorphosis in Xenopus laevis. J. Biol. Chem. 280:27856–27865.
  • Furlow, J. D., and D. D. Brown. 1999. In vitro and in vivo analysis of the regulation of a transcription factor gene by thyroid hormone during Xenopus laevis metamorphosis. Mol. Endocrinol. 13:2076–2089.
  • Havis, E., L. M. Sachs, and B. A. Demeneix. 2003. Metamorphic T3 response genes have specific co-regulator requirements. EMBO Rep. 4:883–888.
  • Hetzel, B. S. 1989. The story of iodine deficiency: an international challenge in nutrition. Oxford University Press, Oxford, United Kingdom.
  • Hu, X., and M. A. Lazar. 2000. Transcriptional repression by nuclear hormone receptors. Trends Endocrinol. Metab. 11:6–10.
  • Huang, S., M. Litt, and G. Felsenfeld. 2005. Methylation of histone H4 by arginine methyltransferase PRMT1 is essential in vivo for many subsequent histone modifications. Genes Dev. 19:1885–1893.
  • Ishizuya-Oka, A., and Y. B. Shi. 2007. Regulation of adult intestinal epithelial stem cell development by thyroid hormone during Xenopus laevis metamorphosis. Dev. Dyn. 236:3358–3368.
  • Ishizuya-Oka, A., and S. Ueda. 1996. Apoptosis and cell proliferation in the Xenopus small intestine during metamorphosis. Cell Tissue Res. 286:467–476.
  • Ishizuya-Oka, A., S. Ueda, and Y.-B. Shi. 1997. Temporal and spatial regulation of a putative transcriptional repressor implicates it as playing a role in thyroid hormone-dependent organ transformation. Dev. Genet. 20:329–337.
  • Ito, M., and R. G. Roeder. 2001. The TRAP/SMCC/Mediator complex and thyroid hormone receptor function. Trends Endocrinol. Metab. 12:127–134.
  • Jepsen, K., and M. G. Rosenfeld. 2002. Biological roles and mechanistic actions of co-repressor complexes. J. Cell Sci. 115:689–698.
  • Jones, P. L., and Y.-B. Shi. 2003. N-CoR-HDAC corepressor complexes: roles in transcriptional regulation by nuclear hormone receptors. Curr. Top. Microbiol. Immunol. 274:237–268.
  • Koh, S. S., D. G. Chen, Y. H. Lee, and M. R. Stallcup. 2001. Synergistic enhancement of nuclear receptor function by p160 coactivators and two coactivators with protein methyltransferase activities. J. Biol. Chem. 276:1089–1098.
  • Krause, C. D., Z. H. Yang, Y. S. Kim, J. H. Lee, J. R. Cook, and S. Pestka. 2007. Protein arginine methyltransferases: evolution and assessment of their pharmacological and therapeutic potential. Pharmacol. Ther. 113:50–87.
  • Lazar, M. A. 1993. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr. Rev. 14:184–193.
  • Lee, D. Y., I. Ianculescu, D. Purcell, X. Zhang, X. Cheng, and M. R. Stallcup. 2007. Surface-scanning mutational analysis of protein arginine methyltransferase 1: roles of specific amino acids in methyltransferase substrate specificity, oligomerization, and coactivator function. Mol. Endocrinol. 21:1381–1393.
  • Lee, D. Y., C. Teyssier, B. D. Strahl, and M. R. Stallcup. 2005. Role of protein methylation in regulation of transcription. Endocr. Rev. 26:147–170.
  • Leloup, J., and M. Buscaglia. 1977. La triiodothyronine: hormone de la métamorphose des amphibiens. C. R. Acad. Sci. 284:2261–2263.
  • Li, J., Q. Lin, H. G. Yoon, Z. Q. Huang, B. D. Strahl, C. D. Allis, and J. Wong. 2002. Involvement of histone methylation and phosphorylation in regulation of transcription by thyroid hormone receptor. Mol. Cell. Biol. 22:5688–5697.
  • Lin, W., G. Shen, X. Yuan, M. R. Jain, S. Yu, A. Zhang, J. D. Chen, and A. N. Kong. 2006. Regulation of Nrf2 transactivation domain activity by p160 RAC3/SRC3 and other nuclear co-regulators. J. Biochem. Mol. Biol. 39:304–310.
  • Lukong, K. E., and S. Richard. 2004. Arginine methylation signals mRNA export. Nat. Struct. Mol. Biol. 11:914–915.
  • Mangelsdorf, D. J., C. Thummel, M. Beato, P. Herrlich, G. Schutz, K. Umesono, B. Blumberg, P. Kastner, M. Mark, and P. Chambon. 1995. The nuclear receptor superfamily: the second decade. Cell 83:835–839.
  • Matsuda, H., B. D. Paul, C. Y. Choi, and Y.-B. Shi. 2007. Contrasting effects of two alternative splicing forms of coactivator-associated arginine methyltransferase 1 on thyroid hormone receptor-mediated transcription in Xenopus laevis. Mol. Endocrinol. 21:1082–1094.
  • McAvoy, J. W., and K. E. Dixon. 1977. Cell proliferation and renewal in the small intestinal epithelium of metamorphosing and adult Xenopus laevis. J. Exp. Zool. 202:129–138.
  • Mowen, K. A., J. Tang, W. Zhu, B. T. Schurter, K. Shuai, H. R. Herschman, and M. David. 2001. Arginine methylation of STAT1 modulates IFNα/β-induced transcription. Cell 104:731–741.
  • Nakajima, K., and Y. Yaoita. 2003. Dual mechanisms governing muscle cell death in tadpole tail during amphibian metamorphosis. Dev. Dyn. 227:246–255.
  • Nieuwkoop, P. D., and J. Faber. 1956. Normal table of Xenopus laevis, 1st ed. North Holland Publishing, Amsterdam, The Netherlands.
  • Ong, S.-E., G. Mittler, and M. Mann. 2004. Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat. Methods 1:119–126.
  • Pal, S., and S. Sif. 2007. Interplay between chromatin remodelers and protein arginine methyltransferases. J. Cell. Physiol. 213:306–315.
  • Paul, B. D., D. R. Buchholz, L. Fu, and Y.-B. Shi. 2007. SRC-p300 coactivator complex is required for thyroid hormone induced amphibian metamorphosis. J. Biol. Chem. 282:7472–7481.
  • Paul, B. D., D. R. Buchholz, L. Fu, and Y.-B. Shi. 2005. Tissue- and gene-specific recruitment of steroid receptor coactivator-3 by thyroid hormone receptor during development. J. Biol. Chem. 280:27165–27172.
  • Paul, B. D., L. Fu, D. R. Buchholz, and Y.-B. Shi. 2005. Coactivator recruitment is essential for liganded thyroid hormone receptor to initiate amphibian metamorphosis. Mol. Cell. Biol. 25:5712–5724.
  • Paul, B. D., and Y.-B. Shi. 2003. Distinct expression profiles of transcriptional coactivators for thyroid hormone receptors during Xenopus laevis metamorphosis. Cell Res. 13:459–464.
  • Pawlak, M. R., C. A. Scherer, J. Chen, M. J. Roshon, and H. E. Ruley. 2000. Arginine N-methyltransferase 1 is required for early postimplantation mouse development, but cells deficient in the enzyme are viable. Mol. Cell. Biol. 20:4859–4869.
  • Rachez, C., and L. P. Freedman. 2000. Mechanisms of gene regulation by vitamin D3 receptor: a network of coactivator interactions. Gene 246:9–21.
  • Rachez, C., and L. P. Freedman. 2001. Mediator complexes and transcription. Curr. Opin. Cell Biol. 13:274–280.
  • Ranjan, M., J. Wong, and Y.-B. Shi. 1994. Transcriptional repression of Xenopus TRβ gene is mediated by a thyroid hormone response element located near the start site. J. Biol. Chem. 269:24699–24705.
  • Rezai-Zadeh, N., X. Zhang, F. Namour, G. Fejer, Y. D. Wen, Y. L. Yao, I. Gyory, K. Wright, and E. Seto. 2003. Targeted recruitment of a histone H4-specific methyltransferase by the transcription factor YY1. Genes Dev. 17:1019–1029.
  • Sachs, L. M., P. L. Jones, E. Havis, N. Rouse, B. A. Demeneix, and Y.-B. Shi. 2002. N-CoR recruitment by unliganded thyroid hormone receptor in gene repression during Xenopus laevis development. Mol. Cell. Biol. 22:8527–8538.
  • Sachs, L. M., and Y.-B. Shi. 2000. Targeted chromatin binding and histone acetylation in vivo by thyroid hormone receptor during amphibian development. Proc. Natl. Acad. Sci. USA 97:13138–13143.
  • Sato, Y., D. R. Buchholz, B. D. Paul, and Y.-B. Shi. 2007. A role of unliganded thyroid hormone receptor in postembryonic development in Xenopus laevis. Mech. Dev. 124:476–488.
  • Schreiber, A. M., B. Das, H. Huang, N. Marsh-Armstrong, and D. D. Brown. 2001. Diverse developmental programs of Xenopus laevis metamorphosis are inhibited by a dominant negative thyroid hormone receptor. Proc. Natl. Acad. Sci. USA 98:10739–10744.
  • Shi, Y.-B. 1999. Amphibian metamorphosis: from morphology to molecular biology. John Wiley & Sons, Inc., New York, NY.
  • Shi, Y.-B., and D. D. Brown. 1993. The earliest changes in gene expression in tadpole intestine induced by thyroid hormone. J. Biol. Chem. 268:20312–20317.
  • Shi, Y.-B., and A. Ishizuya-Oka. 1996. Biphasic intestinal development in amphibians: embryogensis and remodeling during metamorphosis. Curr. Top. Dev. Biol. 32:205–235.
  • Shi, Y.-B., and A. Ishizuya-Oka. 2001. Thyroid hormone regulation of apoptotic tissue remodeling: implications from molecular analysis of amphibian metamorphosis. Prog. Nucleic Acid Res. Mol. Biol. 65:53–100.
  • Shi, Y. B., and A. Ishizuya-Oka. 1997. Autoactivation of Xenopus thyroid hormone receptor beta genes correlates with larval epithelial apoptosis and adult cell proliferation. J. Biomed. Sci. 4:9–18.
  • Strahl, B. D., S. D. Briggs, C. J. Brame, J. A. Caldwell, S. S. Koh, H. Ma, R. G. Cook, J. Shabanowitz, D. F. Hunt, M. R. Stallcup, and C. D. Allis. 2001. Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr. Biol. 11:996–1000.
  • Tata, J. R. 1993. Gene expression during metamorphosis: an ideal model for post-embryonic development. Bioessays 15:239–248.
  • Teyssier, C., H. Ma, R. Emter, A. Kralli, and M. R. Stallcup. 2005. Activation of nuclear receptor coactivator PGC-1α by arginine methylation. Genes Dev. 19:1466–1473.
  • Tomita, A., D. R. Buchholz, K. Obata, and Y.-B. Shi. 2003. Fusion protein of retinoic acid receptor a with promeyelocytic leukaemia protein or promyelocytic leukaemia zinc-finger protein recruits N-CoR-TBLR1 corepressor complex to repress transcription in vivo. J. Biol. Chem. 278:30788–30795.
  • Tomita, A., D. R. Buchholz, and Y.-B. Shi. 2004. Recruitment of N-CoR/SMRT-TBLR1 corepressor complex by unliganded thyroid hormone receptor for gene repression during frog development. Mol. Cell. Biol. 24:3337–3346.
  • Tsai, M. J., and B. W. O'Malley. 1994. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu. Rev. Biochem. 63:451–486.
  • Turner, D. L., and H. Weintraub. 1994. Expression of achaete-scute homolog 3 in Xenopus embryos converts ectodermal cells to a neural fate. Genes Dev. 8:1434–1447.
  • Vallée, M., C. Robert, S. Methot, M. F. Palin, and M. A. Sirard. 2006. Cross-species hybridizations on a multi-species cDNA microarray to identify evolutionarily conserved genes expressed in oocytes. BMC Genomics 7:113.
  • Wang, H., Z. Q. Huang, L. Xia, Q. Feng, H. Erdjument-Bromage, B. D. Strahl, S. D. Briggs, C. D. Allis, J. Wong, P. Tempst, and Y. Zhang. 2001. Methylation of histone H4 at arginine 3 facilitating transcriptional activation by nuclear hormone receptor. Science 293:853–857.
  • Wang, X., H. Matsuda, and Y.-B. Shi. 2008. Developmental regulation and function of thyroid hormone receptors and 9-cis retinoic acid receptors during Xenopus tropicalis metamorphosis. Endocrinology 149:5610–5618.
  • Wang, Z., and D. D. Brown. 1993. Thyroid hormone-induced gene expression program for amphibian tail resorption. J. Biol. Chem. 268:16270–16278.
  • Wong, J., and Y.-B. Shi. 1995. Coordinated regulation of and transcriptional activation by Xenopus thyroid hormone and retinoid X receptors. J. Biol. Chem. 270:18479–18483.
  • Wong, J., Y. B. Shi, and A. P. Wolffe. 1995. A role for nucleosome assembly in both silencing and activation of the Xenopus TR beta A gene by the thyroid hormone receptor. Genes Dev. 9:2696–2711.
  • Wu, Y., P. Delerive, W. W. Chin, and T. P. Burris. 2002. Requirement of helix 1 and the AF-2 domain of the thyroid hormone receptor for coactivation by PGC-1. J. Biol. Chem. 277:8898–8905.
  • Yen, P. M. 2001. Physiological and molecular basis of thyroid hormone action. Physiol. Rev. 81:1097–1142.
  • Zhang, J., and M. A. Lazar. 2000. The mechanism of action of thyroid hormones. Annu. Rev. Physiol. 62:439–466.
  • Zhao, X., V. Jankovic, A. Gural, G. Huang, A. Pardanani, S. Menendez, J. Zhang, R. Dunne, A. Xiao, H. Erdjument-Bromage, C. D. Allis, P. Tempst, and S. D. Nimer. 2008. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity. Genes Dev. 22:640–653.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.