77
Views
27
CrossRef citations to date
0
Altmetric
Article

Coordination of RNA Polymerase II Pausing and 3′ End Processing Factor Recruitment with Alternative Polyadenylation

, , , , &
Pages 295-303 | Received 30 Sep 2015, Accepted 28 Oct 2015, Published online: 17 Mar 2023

REFERENCES

  • Chan SL, Huppertz I, Yao C, Weng L, Moresco JJ, Yates JR III, Ule J, Manley JL, Shi Y. 2014. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3′ processing. Genes Dev 28:2370–2380. http://dx.doi.org/10.1101/gad.250993.114.
  • Mandel CR, Bai Y, Tong L. 2008. Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci 65:1099–1122. http://dx.doi.org/10.1007/s00018-007-7474-3.
  • Schönemann L, Kühn U, Martin G, Schäfer P, Gruber AR, Keller W, Zavolan M, Wahle E. 2014. Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33. Genes Dev 28:2381–2393. http://dx.doi.org/10.1101/gad.250985.114.
  • Kuehner JN, Pearson EL, Moore C. 2011. Unravelling the means to an end: RNA polymerase II transcription termination. Nat Rev Mol Cell Biol 12:283–294. http://dx.doi.org/10.1038/nrm3098.
  • Richard P, Manley JL. 2009. Transcription termination by nuclear RNA polymerases. Genes Dev 23:1247–1269. http://dx.doi.org/10.1101/gad.1792809.
  • Hirose Y, Manley JL. 1998. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395:93–96. http://dx.doi.org/10.1038/25786.
  • McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, Wickens M, Bentley DL. 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357–361. http://dx.doi.org/10.1038/385357a0.
  • Buratowski S. 2009. Progression through the RNA polymerase II CTD cycle. Mol Cell 36:541–546. http://dx.doi.org/10.1016/j.molcel.2009.10.019.
  • Heidemann M, Hintermair C, Voss K, Eick D. 2013. Dynamic phosphorylation patterns of RNA polymerase II CTD during transcription. Biochim Biophys Acta 1829:55–62. http://dx.doi.org/10.1016/j.bbagrm.2012.08.013.
  • Komarnitsky P, Cho EJ, Buratowski S. 2000. Different phosphorylated forms of RNA polymerase II and associated mRNA processing factors during transcription. Genes Dev 14:2452–2460. http://dx.doi.org/10.1101/gad.824700.
  • Ahn SH, Kim M, Buratowski S. 2004. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol Cell 13:67–76. http://dx.doi.org/10.1016/S1097-2765(03)00492-1.
  • Licatalosi DD, Geiger G, Minet M, Schroeder S, Cilli K, McNeil JB, Bentley DL. 2002. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol Cell 9:1101–1111. http://dx.doi.org/10.1016/S1097-2765(02)00518-X.
  • Ni Z, Schwartz BE, Werner J, Suarez JR, Lis JT. 2004. Coordination of transcription, RNA processing, and surveillance by P-TEFb kinase on heat shock genes. Mol Cell 13:55–65. http://dx.doi.org/10.1016/S1097-2765(03)00526-4.
  • Anamika K, Gyenis A, Poidevin L, Poch O, Tora L. 2012. RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts. PLoS One 7:e38769. http://dx.doi.org/10.1371/journal.pone.0038769.
  • Dye MJ, Gromak N, Proudfoot NJ. 2006. Exon tethering in transcription by RNA polymerase II. Mol Cell 21:849–859. http://dx.doi.org/10.1016/j.molcel.2006.01.032.
  • Enriquez-Harris P, Levitt N, Briggs D, Proudfoot NJ. 1991. A pause site for RNA polymerase II is associated with termination of transcription. EMBO J 10:1833–1842.
  • Glover-Cutter K, Kim S, Espinosa J, Bentley DL. 2008. RNA polymerase II pauses and associates with pre-mRNA processing factors at both ends of genes. Nat Struct Mol Biol 15:71–78. http://dx.doi.org/10.1038/nsmb1352.
  • Gromak N, West S, Proudfoot NJ. 2006. Pause sites promote transcriptional termination of mammalian RNA polymerase II. Mol Cell Biol 26:3986–3996. http://dx.doi.org/10.1128/MCB.26.10.3986-3996.2006.
  • Lian Z, Karpikov A, Lian J, Mahajan MC, Hartman S, Gerstein M, Snyder M, Weissman SM. 2008. A genomic analysis of RNA polymerase II modification and chromatin architecture related to 3′ end RNA polyadenylation. Genome Res 18:1224–1237. http://dx.doi.org/10.1101/gr.075804.107.
  • Davidson L, Muniz L, West S. 2014. 3′ end formation of pre-mRNA and phosphorylation of Ser2 on the RNA polymerase II CTD are reciprocally coupled in human cells. Genes Dev 28:342–356. http://dx.doi.org/10.1101/gad.231274.113.
  • Kim S, Kim H, Fong N, Erickson B, Bentley DL. 2011. Pre-mRNA splicing is a determinant of histone H3K36 methylation. Proc Natl Acad Sci U S A 108:13564–13569. http://dx.doi.org/10.1073/pnas.1109475108.
  • Di Giammartino DC, Nishida K, Manley JL. 2011. Mechanisms and consequences of alternative polyadenylation. Mol Cell 43:853–866. http://dx.doi.org/10.1016/j.molcel.2011.08.017.
  • Hoque M, Ji Z, Zheng D, Luo W, Li W, You B, Park JY, Yehia G, Tian B. 2013. Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10:133–139. http://dx.doi.org/10.1038/nchembio.1406.
  • Lianoglou S, Garg V, Yang JL, Leslie CS, Mayr C. 2013. Ubiquitously transcribed genes use alternative polyadenylation to achieve tissue-specific expression. Genes Dev 27:2380–2396. http://dx.doi.org/10.1101/gad.229328.113.
  • Alt FW, Bothwell AL, Knapp M, Siden E, Mather E, Koshland M, Baltimore D. 1980. Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3′ ends. Cell 20:293–301. http://dx.doi.org/10.1016/0092-8674(80)90615-7.
  • Early P, Rogers J, Davis M, Calame K, Bond M, Wall R, Hood L. 1980. Two mRNAs can be produced from a single immunoglobulin mu gene by alternative RNA processing pathways. Cell 20:313–319. http://dx.doi.org/10.1016/0092-8674(80)90617-0.
  • Takagaki Y, Manley JL. 1998. Levels of polyadenylation factor CstF-64 control IgM heavy chain mRNA accumulation and other events associated with B cell differentiation. Mol Cell 2:761–771. http://dx.doi.org/10.1016/S1097-2765(00)80291-9.
  • Takagaki Y, Seipelt RL, Peterson ML, Manley JL. 1996. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87:941–952. http://dx.doi.org/10.1016/S0092-8674(00)82000-0.
  • Bruce SR, Dingle RW, Peterson ML. 2003. B-cell and plasma-cell splicing differences: a potential role in regulated immunoglobulin RNA processing. RNA 9:1264–1273. http://dx.doi.org/10.1261/rna.5820103.
  • Ma J, Gunderson SI, Phillips C. 2006. Non-snRNP U1A levels decrease during mammalian B-cell differentiation and release the IgM secretory poly(A) site from repression. RNA 12:122–132. http://dx.doi.org/10.1261/rna.2159506.
  • Martincic K, Alkan SA, Cheatle A, Borghesi L, Milcarek C. 2009. Transcription elongation factor ELL2 directs immunoglobulin secretion in plasma cells by stimulating altered RNA processing. Nat Immunol 10:1102–1109. http://dx.doi.org/10.1038/ni.1786.
  • Peterson ML, Perry RP. 1986. Regulated production of mu m and mu s mRNA requires linkage of the poly(A) addition sites and is dependent on the length of the mu s-mu m intron. Proc Natl Acad Sci U S A 83:8883–8887. http://dx.doi.org/10.1073/pnas.83.23.8883.
  • Peterson ML, Perry RP. 1989. The regulated production of mu m and mu s mRNA is dependent on the relative efficiencies of mu s poly(A) site usage and the c mu 4-to-M1 splice. Mol Cell Biol 9:726–738. http://dx.doi.org/10.1128/MCB.9.2.726.
  • Peterson ML, Bertolino S, Davis F. 2002. An RNA polymerase pause site is associated with the immunoglobulin mus poly(A) site. Mol Cell Biol 22:5606–5615. http://dx.doi.org/10.1128/MCB.22.15.5606-5615.2002.
  • Schroeder SC, Schwer B, Shuman S, Bentley D. 2000. Dynamic association of capping enzymes with transcribing RNA polymerase II. Genes Dev 14:2435–2440. http://dx.doi.org/10.1101/gad.836300.
  • Ochi A, Hawley RG, Hawley T, Shulman MJ, Traunecker A, Kohler G, Hozumi N. 1983. Functional immunoglobulin M production after transfection of cloned immunoglobulin heavy and light chain genes into lymphoid cells. Proc Natl Acad Sci U S A 80:6351–6355. http://dx.doi.org/10.1073/pnas.80.20.6351.
  • Langmead B, Trapnell C, Pop M, Salzberg SL. 2009. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. http://dx.doi.org/10.1186/gb-2009-10-3-r25.
  • Berg MG, Singh LN, Younis I, Kaida D, Zhang Z, Wan L, Dreyfuss G. 2012. U1 snRNP determines mRNA length and regulates isoform expression. Cell 150:53–64. http://dx.doi.org/10.1016/j.cell.2012.05.029.
  • Kaida D, Berg MG, Younis I, Kasim M, Singh LN, Wan L, Dreyfuss G. 2010. U1 snRNP protects pre-mRNAs from premature cleavage and polyadenylation. Nature 468:664–668. http://dx.doi.org/10.1038/nature09479.
  • Lennon GG, Perry RP. 1985. C mu-containing transcripts initiate heterogeneously within the IgH enhancer region and contain a novel 5′-nontranslatable exon. Nature 318:475–478. http://dx.doi.org/10.1038/318475a0.
  • Peterson ML, Bingham GL, Cowan C. 2006. Multiple features contribute to the use of the immunoglobulin M secretion-specific poly(A) signal but are not required for developmental regulation. Mol Cell Biol 26:6762–6771. http://dx.doi.org/10.1128/MCB.00889-06.
  • Nag A, Narsinh K, Martinson HG. 2007. The poly(A)-dependent transcriptional pause is mediated by CPSF acting on the body of the polymerase. Nat Struct Mol Biol 14:662–669. http://dx.doi.org/10.1038/nsmb1253.
  • Yonaha M, Proudfoot NJ. 1999. Specific transcriptional pausing activates polyadenylation in a coupled in vitro system. Mol Cell 3:593–600. http://dx.doi.org/10.1016/S1097-2765(00)80352-4.
  • Phillips C, Virtanen A. 1997. The murine IgM secretory poly(A) site contains dual upstream and downstream elements which affect polyadenylation. Nucleic Acids Res 25:2344–2351. http://dx.doi.org/10.1093/nar/25.12.2344.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.