23
Views
39
CrossRef citations to date
0
Altmetric
Article

Incorporation of the Noncoding roX RNAs Alters the Chromatin-Binding Specificity of the Drosophila MSL1/MSL2 Complex

, &
Pages 1252-1264 | Received 22 May 2007, Accepted 04 Dec 2007, Published online: 27 Mar 2023

REFERENCES

  • Akhtar, A., D. Zink, and P. B. Becker. 2000. Chromodomains are protein-RNA interaction modules. Nature 407:405–409.
  • Alekseyenko, A. A., E. Larschan, W. R. Lai, P. J. Park, and M. I. Kuroda. 2006. High-resolution ChIP-chip analysis reveals that the Drosophila MSL complex selectively identifies active genes on the male X chromosome. Genes Dev. 20:848–857.
  • Bai, X., A. A. Alekseyenko, and M. I. Kuroda. 2004. Sequence-specific targeting of MSL complex regulates transcription of the roX RNA genes. EMBO J. 23:2853–2861.
  • Bai, X., E. Larschan, S. Y. Kwon, P. Badenhorst, and M. I. Kuroda. 2007. Regional control of chromatin organization by noncoding roX RNAs and the NURF remodeling complex in Drosophila melanogaster. Genetics 176:1491–1499.
  • Belote, J. M., and J. C. Lucchesi. 1980. Control of X chromosome transcription by the maleless gene in Drosophila. Nature 285:573–575.
  • Copps, K., R. Richman, L. M. Lyman, K. A. Chang, J. Rampersad-Ammons, and M. I. Kuroda. 1998. Complex formation by the Drosophila MSL proteins: role of the MSL2 RING finger in protein complex assembly. EMBO J. 17:5409–5417.
  • Corona, D. F., C. R. Clapier, P. B. Becker, and J. W. Tamkun. 2002. Modulation of ISWI function by site-specific histone acetylation. EMBO Rep. 3:242–247.
  • Demakova, O. V., I. V. Kotlikova, P. R. Gordadze, A. A. Alekseyenko, M. I. Kuroda, and I. F. Zhimulev. 2003. The MSL complex levels are critical for its correct targeting to the chromosomes in Drosophila melanogaster. Chromosoma 112:103–115.
  • Deng, X., and V. H. Meller. 2006. Non-coding RNA in fly dosage compensation. Trends Biochem. Sci. 31:526–532.
  • Deng, X., and V. H. Meller. 2006. roX RNAs are required for increased expression of X-linked genes in Drosophila melanogaster males. Genetics 174:1859–1866.
  • Deng, X., B. P. Rattner, S. Souter, and V. H. Meller. 2005. The severity of roX1 mutations is predicted by MSL localization on the X chromosome. Mech. Dev. 122:1094–1105.
  • Furuhashi, H., M. Nakajima, and S. Hirose. 2006. DNA supercoiling factor contributes to dosage compensation in Drosophila. Development 133:4475–4483.
  • Gilfillan, G. D., T. Straub, E. de Wit, F. Greil, R. Lamm, B. van Steensel, and P. B. Becker. 2006. Chromosome-wide gene-specific targeting of the Drosophila dosage compensation complex. Genes Dev. 20:858–870.
  • Gu, W., P. Szauter, and J. C. Lucchesi. 1998. Targeting of MOF, a putative histone acetyl transferase, to the X chromosome of Drosophila melanogaster. Dev. Genet. 22:56–64.
  • Gu, W., X. Wei, A. Pannuti, and J. C. Lucchesi. 2000. Targeting the chromatin-remodeling MSL complex of Drosophila to its sites of action on the X chromosome requires both acetyl transferase and ATPase activities. EMBO J. 19:5202–5211.
  • Hamada, F. N., P. J. Park, P. R. Gordadze, and M. I. Kuroda. 2005. Global regulation of X chromosomal genes by the MSL complex in Drosophila melanogaster. Genes Dev. 19:2289–2294.
  • Henry, R. A., B. Tews, X. Li, and M. J. Scott. 2001. Recruitment of the male-specific lethal (MSL) dosage compensation complex to an autosomally integrated roX chromatin entry site correlates with an increased expression of an adjacent reporter gene in male Drosophila. J. Biol. Chem. 276:31953–31958.
  • Hung, M. L., P. Chao, and K. Y. Chang. 2003. dsRBM1 and a proline-rich domain of RNA helicase A can form a composite binder to recognize a specific dsDNA. Nucleic Acids Res. 31:5741–5753.
  • Kelley, R. L. 2004. Path to equality strewn with roX. Dev. Biol. 269:18–25.
  • Khoo, D., C. Perez, and I. Mohr. 2002. Characterization of RNA determinants recognized by the arginine- and proline-rich region of Us11, a herpes simplex virus type 1-encoded double-stranded RNA binding protein that prevents PKR activation. J. Virol. 76:11971–11981.
  • Kuroda, M. I., M. J. Kernan, R. Kreber, B. Ganetzky, and B. S. Baker. 1991. The maleless protein associates with the X chromosome to regulate dosage compensation in Drosophila. Cell 66:935–947.
  • Lee, C. G., K. A. Chang, M. I. Kuroda, and J. Hurwitz. 1997. The NTPase/helicase activities of Drosophila maleless, an essential factor in dosage compensation. EMBO J. 16:2671–2681.
  • Legube, G., S. K. McWeeney, M. J. Lercher, and A. Akhtar. 2006. X-chromosome-wide profiling of MSL-1 distribution and dosage compensation in Drosophila. Genes Dev. 20:871–883.
  • Li, F., D. A. Parry, and M. J. Scott. 2005. The amino-terminal region of Drosophila MSL1 contains basic, glycine-rich, and leucine zipper-like motifs that promote X chromosome binding, self-association, and MSL2 binding, respectively. Mol. Cell. Biol. 25:8913–8924.
  • Li, S. S. 2005. Specificity and versatility of SH3 and other proline-recognition domains: structural basis and implications for cellular signal transduction. Biochem. J. 390:641–653.
  • Lucchesi, J. C., and M. I. Kuroda. 2007. Dosage compensation in Drosophila, p. 307-319. In C. D. Allis, T. Jenuwein, and D. Reinberg (ed.), Epigenetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
  • Lyman, L. M., K. Copps, L. Rastelli, R. L. Kelley, and M. I. Kuroda. 1997. Drosophila male-specific lethal-2 protein: structure/function analysis and dependence on MSL-1 for chromosome association. Genetics 147:1743–1753.
  • Ma, J., and M. Ptashne. 1987. A new class of yeast transcriptional activators. Cell 51:113–119.
  • Marín, I. 2003. Evolution of chromatin-remodeling complexes: comparative genomics reveals the ancient origin of “novel” compensasome genes. J. Mol. Evol. 56:527–539.
  • Marín, I., A. Franke, G. J. Bashaw, and B. S. Baker. 1996. The dosage compensation system of Drosophila is co-opted by newly evolved X chromosomes. Nature 383:160–163.
  • Meller, V. H. 2003. Initiation of dosage compensation in Drosophila embryos depends on expression of the roX RNAs. Mech. Dev. 120:759–767.
  • Meller, V. H., P. R. Gordadze, Y. Park, X. Chu, C. Stuckenholz, R. L. Kelley, and M. I. Kuroda. 2000. Ordered assembly of roX RNAs into MSL complexes on the dosage-compensated X chromosome in Drosophila. Curr. Biol. 10:136–143.
  • Meller, V. H., and B. P. Rattner. 2002. The roX genes encode redundant male-specific lethal transcripts required for targeting of the MSL complex. EMBO J. 21:1084–1091.
  • Meller, V. H., K. H. Wu, G. Roman, M. I. Kuroda, and R. L. Davis. 1997. roX1 RNA paints the X chromosome of male Drosophila and is regulated by the dosage compensation system. Cell 88:445–457.
  • Mendjan, S., M. Taipale, J. Kind, H. Holz, P. Gebhardt, M. Schelder, M. Vermeulen, A. Buscaino, K. Duncan, J. Mueller, M. Wilm, H. G. Stunnenberg, H. Saumweber, and A. Akhtar. 2006. Nuclear pore components are involved in the transcriptional regulation of dosage compensation in Drosophila. Mol. Cell 21:811–823.
  • Oh, H., Y. Park, and M. I. Kuroda. 2003. Local spreading of MSL complexes from roX genes on the Drosophila X chromosome. Genes Dev. 17:1334–1339.
  • Palmer, M. J., R. Richman, L. Richter, and M. I. Kuroda. 1994. Sex-specific regulation of the male-specific lethal-1 dosage compensation gene in Drosophila. Genes Dev. 8:698–706.
  • Pang, K. C., M. C. Frith, and J. S. Mattick. 2006. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 22:1–5.
  • Prasanth, K. V., and D. L. Spector. 2007. Eukaryotic regulatory RNAs: an answer to the ‘genome complexity’ conundrum. Genes Dev. 21:11–42.
  • Rattner, B. P., and V. H. Meller. 2004. Drosophila male-specific lethal 2 protein controls sex-specific expression of the roX genes. Genetics 166:1825–1832.
  • Rea, S., and A. Akhtar. 2006. MSL proteins and the regulation of gene expression. Curr. Top. Microbiol. Immunol. 310:117–140.
  • Richter, L., J. R. Bone, and M. I. Kuroda. 1996. RNA-dependent association of the Drosophila maleless protein with the male X chromosome. Genes Cells 1:325–336.
  • Ruiz, M. F., M. R. Esteban, C. Donoro, C. Goday, and L. Sanchez. 2000. Evolution of dosage compensation in Diptera: the gene maleless implements dosage compensation in Drosophila (Brachycera suborder) but its homolog in Sciara (Nematocera suborder) appears to play no role in dosage compensation. Genetics 156:1853–1865.
  • Scott, M. J., L. L. Pan, S. B. Cleland, A. L. Knox, and J. Heinrich. 2000. MSL1 plays a central role in assembly of the MSL complex, essential for dosage compensation in Drosophila. EMBO J. 19:144–155.
  • Smith, E. R., A. Pannuti, W. Gu, A. Steurnagel, R. G. Cook, C. D. Allis, and J. C. Lucchesi. 2000. The Drosophila MSL complex acetylates histone H4 at lysine 16, a chromatin modification linked to dosage compensation. Mol. Cell. Biol. 20:312–318.
  • Spierer, A., C. Seum, M. Delattre, and P. Spierer. 2005. Loss of the modifiers of variegation Su(var)3-7 or HP1 impacts male X polytene chromosome morphology and dosage compensation. J. Cell Sci. 118:5047–5057.
  • Straub, T., and P. B. Becker. 2007. Dosage compensation: the beginning and end of generalization. Nat. Rev. Genet. 8:47–57.
  • Straub, T., G. D. Gilfillan, V. K. Maier, and P. B. Becker. 2005. The Drosophila MSL complex activates the transcription of target genes. Genes Dev. 19:2284–2288.
  • Verdel, A., S. Jia, S. Gerber, T. Sugiyama, S. Gygi, S. I. Grewal, and D. Moazed. 2004. RNAi-mediated targeting of heterochromatin by the RITS complex. Science 303:672–676.
  • Zhou, S., Y. Yang, M. J. Scott, A. Pannuti, K. C. Fehr, A. Eisen, E. V. Koonin, D. L. Fouts, R. Wrightsman, J. E. Manning, and J. C. Lucchesi. 1995. Male-specific lethal 2, a dosage compensation gene of Drosophila, undergoes sex-specific regulation and encodes a protein with a RING finger and a metallothionein-like cysteine cluster. EMBO J. 14:2884–2895.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.