739
Views
23
CrossRef citations to date
0
Altmetric
Article

Poly(A) Signals Located near the 5′ End of Genes Are Silenced by a General Mechanism That Prevents Premature 3′-End Processing

, , &
Pages 639-651 | Received 09 Aug 2010, Accepted 29 Nov 2010, Published online: 20 Mar 2023

REFERENCES

  • Ahn, S. H., M. Kim, and S. Buratowski. 2004. Phosphorylation of serine 2 within the RNA polymerase II C-terminal domain couples transcription and 3′ end processing. Mol. Cell 13:67–76.
  • Allmang, C., et al. 1999. The yeast exosome and human PM-Scl are related complexes of 3′-→ 5′ exonucleases. Genes Dev. 13:2148–2158.
  • Ashe, M. P., P. Griffin, W. James, and N. J. Proudfoot. 1995. Poly(A) site selection in the HIV-1 provirus: inhibition of promoter-proximal polyadenylation by the downstream major splice donor site. Genes Dev. 9:3008–3025.
  • Ashe, M. P., L. H. Pearson, and N. J. Proudfoot. 1997. The HIV-1 5′ LTR poly(A) site is inactivated by U1 snRNP interaction with the downstream major splice donor site. EMBO J. 16:5752–5763.
  • Brogna, S. 1999. Nonsense mutations in the alcohol dehydrogenase gene of Drosophila melanogaster correlate with an abnormal 3′ end processing of the corresponding pre-mRNA. RNA 5:562–573.
  • Brogna, S., and M. Ashburner. 1997. The Adh-related gene of Drosophila melanogaster is expressed as a functional dicistronic messenger RNA: multigenic transcription in higher organisms. EMBO J. 16:2023–2031.
  • Buratowski, S. 2009. Progression through the RNA polymerase II CTD cycle. Mol. Cell 36:541–546.
  • Caplen, N. J., J. Fleenor, A. Fire, and R. A. Morgan. 2000. dsRNA-mediated gene silencing in cultured Drosophila cells: a tissue culture model for the analysis of RNA interference. Gene 252:95–105.
  • Chan, H. Y., S. Brogna, and C. J. O'Kane. 2001. Dribble, the Drosophila KRR1p homologue, is involved in rRNA processing. Mol. Biol. Cell 12:1409–1419.
  • Cheng, Y., R. M. Miura, and B. Tian. 2006. Prediction of mRNA polyadenylation sites by support vector machine. Bioinformatics 22:2320–2325.
  • Cho, E. J., M. S. Kobor, M. Kim, J. Greenblatt, and S. Buratowski. 2001. Opposing effects of Ctk1 kinase and Fcp1 phosphatase at Ser 2 of the RNA polymerase II C-terminal domain. Genes Dev. 15:3319–3329.
  • Clemens, J. C., et al. 2000. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. U. S. A. 97:6499–6503.
  • Colgan, D. F., and J. L. Manley. 1997. Mechanism and regulation of mRNA polyadenylation. Genes Dev. 11:2755–2766.
  • de Vries, H., et al. 2000. Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J. 19:5895–5904.
  • Gilsdorf, M., et al. 2010. GenomeRNAi: a database for cell-based RNAi phenotypes. 2009 update. Nucleic Acids Res. 38:D448–D452.
  • Gudipati, R. K., T. Villa, J. Boulay, and D. Libri. 2008. Phosphorylation of the RNA polymerase II C-terminal domain dictates transcription termination choice. Nat. Struct. Mol. Biol. 15:786–794.
  • Hirose, Y., and J. L. Manley. 1998. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 395:93–96.
  • Holton, T. A., and M. W. Graham. 1991. A simple and efficient method for direct cloning of PCR products using ddT-tailed vectors. Nucleic Acids Res. 19:1156.
  • Houseley, J., and D. Tollervey. 2009. The many pathways of RNA degradation. Cell 136:763–776.
  • Licatalosi, D. D., et al. 2002. Functional interaction of yeast pre-mRNA 3′ end processing factors with RNA polymerase II. Mol. Cell 9:1101–1111.
  • Lopez, F., S. Granjeaud, T. Ara, B. Ghattas, and D. Gautheret. 2006. The disparate nature of “intergenic” polyadenylation sites. RNA 12:1794–1801.
  • McCracken, S., et al. 1997. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 385:357–361.
  • Moucadel, V., F. Lopez, T. Ara, P. Benech, and D. Gautheret. 2007. Beyond the 3′ end: experimental validation of extended transcript isoforms. Nucleic Acids Res. 35:1947–1957.
  • Nag, A., K. Narsinh, A. Kazerouninia, and H. G. Martinson. 2006. The conserved AAUAAA hexamer of the poly(A) signal can act alone to trigger a stable decrease in RNA polymerase II transcription velocity. RNA 12:1534–1544.
  • Nunes, N. M., W. Li, B. Tian, and A. Furger. 2010. A functional human poly(A) site requires only a potent DSE and an A-rich upstream sequence. EMBO J. 29:1523–1536.
  • Orozco, I. J., S. J. Kim, and H. G. Martinson. 2002. The poly(A) signal, without the assistance of any downstream element, directs RNA polymerase II to pause in vivo and then to release stochastically from the template. J. Biol. Chem. 277:42899–42911.
  • Peterlin, B. M., and D. H. Price. 2006. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23:297–305.
  • Proudfoot, N. 2004. New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr. Opin. Cell Biol. 16:272–278.
  • Proudfoot, N. J., A. Furger, and M. J. Dye. 2002. Integrating mRNA processing with transcription. Cell 108:501–512.
  • Ramanathan, P., J. Guo, R. N. Whitehead, and S. Brogna. 2008. The intergenic spacer of the Drosophila Adh-Adhr dicistronic mRNA stimulates internal translation initiation. RNA Biol. 5:149–156.
  • Richard, P., and J. L. Manley. 2009. Transcription termination by nuclear RNA polymerases. Genes Dev. 23:1247–1269.
  • Sadowski, M., B. Dichtl, W. Hubner, and W. Keller. 2003. Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination. EMBO J. 22:2167–2177.
  • Shi, Y., et al. 2009. Molecular architecture of the human pre-mRNA 3′ processing complex. Mol. Cell 33:365–376.
  • Tabaska, J. E., and M. Q. Zhang. 1999. Detection of polyadenylation signals in human DNA sequences. Gene 231:77–86.
  • Tahirov, T. H., et al. 2010. Crystal structure of HIV-1 Tat complexed with human P-TEFb. Nature 465:747–751.
  • Tian, B., J. Hu, H. Zhang, and C. S. Lutz. 2005. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res. 33:201–212.
  • Tian, B., Z. Pan, and J. Y. Lee. 2007. Widespread mRNA polyadenylation events in introns indicate dynamic interplay between polyadenylation and splicing. Genome Res. 17:156–165.
  • Vasiljeva, L., M. Kim, H. Mutschler, S. Buratowski, and A. Meinhart. 2008. The Nrd1-Nab3-Sen1 termination complex interacts with the Ser5-phosphorylated RNA polymerase II C-terminal domain. Nat. Struct. Mol. Biol. 15:795–804.
  • Wahle, E. 1995. 3′-end cleavage and polyadenylation of mRNA precursors. Biochim. Biophys. Acta 1261:183–194.
  • Weichs an der Glon, C., J. Monks, and N. J. Proudfoot. 1991. Occlusion of the HIV poly(A) site. Genes Dev. 5:244–253.
  • West, S., and N. J. Proudfoot. 2008. Human Pcf11 enhances degradation of RNA polymerase II-associated nascent RNA and transcriptional termination. Nucleic Acids Res. 36:905–914.
  • Yang, Z., et al. 2005. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19:535–545.
  • Zhang, Z., J. Fu, and D. S. Gilmour. 2005. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11. Genes Dev. 19:1572–1580.
  • Zhang, Z., and D. S. Gilmour. 2006. Pcf11 is a termination factor in Drosophila that dismantles the elongation complex by bridging the CTD of RNA polymerase II to the nascent transcript. Mol. Cell 21:65–74.
  • Zhu, Y., et al. 1997. Transcription elongation factor P-TEFb is required for HIV-1 Tat transactivation in vitro. Genes Dev. 11:2622–2632.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.