50
Views
20
CrossRef citations to date
0
Altmetric
Article

PRMT4-Mediated Arginine Methylation Negatively Regulates Retinoblastoma Tumor Suppressor Protein and Promotes E2F-1 Dissociation

, , , , , & show all
Pages 238-248 | Received 17 Jul 2014, Accepted 17 Oct 2014, Published online: 20 Mar 2023

REFERENCES

  • Weinberg RA. 1995. The retinoblastoma protein and cell cycle control. Cell 81:323–330. http://dx.doi.org/10.1016/0092-8674(95)90385-2.
  • Massagué J. 2004. G1 cell-cycle control and cancer. Nature 432:298–306. http://dx.doi.org/10.1038/nature03094.
  • Lees JA, Saito M, Vidal M, Valentine M, Look T, Harlow E, Dyson N, Helin K. 1993. The retinoblastoma protein binds to a family of E2F transcription factors. Mol Cell Biol 13:7813–7825.
  • Shan B, Zhu X, Chen PL, Durfee T, Yang Y, Sharp D, Lee WH. 1992. Molecular cloning of cellular genes encoding retinoblastoma-associated proteins: identification of a gene with properties of the transcription factor E2F. Mol Cell Biol 12:5620–5631.
  • Graña X, Garriga J, Mayol X. 1998. Role of the retinoblastoma protein family, pRB, p107 and p130 in the negative control of cell growth. Oncogene 17:3365–3383.
  • DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica-Worms H, Huang CM, Livingston DM. 1989. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58:1085–1095. http://dx.doi.org/10.1016/0092-8674(89)90507-2.
  • Helin K, Harlow E, Fattaey A. 1993. Inhibition of E2F-1 transactivation by direct binding of the retinoblastoma protein. Mol Cell Biol 13:6501–6508.
  • Hiebert SW. 1993. Regions of the retinoblastoma gene product required for its interaction with the E2F transcription factor are necessary for E2 promoter repression and pRb-mediated growth suppression. Mol Cell Biol 13:3384–3391.
  • Rubin SM, Gall AL, Zheng N, Pavletich NP. 2005. Structure of the Rb C-terminal domain bound to E2F1-DP1: a mechanism for phosphorylation-induced E2F release. Cell 123:1093–1106. http://dx.doi.org/10.1016/j.cell.2005.09.044.
  • Lee C, Chang JH, Lee HS, Cho Y. 2002. Structural basis for the recognition of the E2F transactivation domain by the retinoblastoma tumor suppressor. Genes Dev 16:3199–3212. http://dx.doi.org/10.1101/gad.1046102.
  • Buchkovich K, Duffy LA, Harlow E. 1989. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58:1097–1105. http://dx.doi.org/10.1016/0092-8674(89)90508-4.
  • Lundberg AS, Weinberg RA. 1998. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 18:753–761.
  • Brown VD, Phillips RA, Gallie BL. 1999. Cumulative effect of phosphorylation of pRB on regulation of E2F activity. Mol Cell Biol 19:3246–3256.
  • Mittnacht S. 1998. Control of pRB phosphorylation. Curr Opin Genet Dev 8:21–27. http://dx.doi.org/10.1016/S0959-437X(98)80057-9.
  • Burke JR, Deshong AJ, Pelton JG, Rubin SM. 2010. Phosphorylation-induced conformational changes in the retinoblastoma protein inhibit E2F transactivation domain binding. J Biol Chem 285:16286–16293. http://dx.doi.org/10.1074/jbc.M110.108167.
  • Burke JR, Hura GL, Rubin SM. 2012. Structures of inactive retinoblastoma protein reveal multiple mechanisms for cell cycle control. Genes Dev 26:1156–1166. http://dx.doi.org/10.1101/gad.189837.112.
  • DeGregori J, Kowalik T, Nevins JR. 1995. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis- and G1/S-regulatory genes. Mol Cell Biol 15:4215–4224.
  • Qin XQ, Chittenden T, Livingston DM, Kaelin WG, Jr. 1992. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev 6:953–964. http://dx.doi.org/10.1101/gad.6.6.953.
  • Hiebert SW, Chellappan SP, Horowitz JM, Nevins JR. 1992. The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes Dev 6:177–185. http://dx.doi.org/10.1101/gad.6.2.177.
  • Knudsen ES, Wang JY. 1996. Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites. J Biol Chem 271:8313–8320. http://dx.doi.org/10.1074/jbc.271.14.8313.
  • Burke JR, Liban TJ, Restrepo T, Lee HW, Rubin SM. 2014. Multiple mechanisms for E2F binding inhibition by phosphorylation of the retinoblastoma protein C-terminal domain. J Mol Biol 426:245–255. http://dx.doi.org/10.1016/j.jmb.2013.09.031.
  • Nguyen DX, Baglia LA, Huang SM, Baker CM, McCance DJ. 2004. Acetylation regulates the differentiation-specific functions of the retinoblastoma protein. EMBO J 23:1609–1618. http://dx.doi.org/10.1038/sj.emboj.7600176.
  • Chan HM, Krstic-Demonacos M, Smith L, Demonacos C, La Thangue NB. 2001. Acetylation control of the retinoblastoma tumour-suppressor protein. Nat Cell Biol 3:667–674. http://dx.doi.org/10.1038/35083062.
  • Markham D, Munro S, Soloway J, O'Connor DP, La Thangue NB. 2006. DNA-damage-responsive acetylation of pRb regulates binding to E2F-1. EMBO Rep 7:192–198. http://dx.doi.org/10.1038/sj.embor.7400591.
  • Ledl A, Schmidt D, Muller S. 2005. Viral oncoproteins E1A and E7 and cellular LxCxE proteins repress SUMO modification of the retinoblastoma tumor suppressor. Oncogene 24:3810–3818. http://dx.doi.org/10.1038/sj.onc.1208539.
  • Kalejta RF, Shenk T. 2003. Proteasome-dependent, ubiquitin-independent degradation of the Rb family of tumor suppressors by the human cytomegalovirus pp71 protein. Proc Natl Acad Sci U S A 100:3263–3268. http://dx.doi.org/10.1073/pnas.0538058100.
  • Ying H, Xiao ZX. 2006. Targeting retinoblastoma protein for degradation by proteasomes. Cell Cycle 5:506–508. http://dx.doi.org/10.4161/cc.5.5.2515.
  • Carr SM, Munro S, Kessler B, Oppermann U, La Thangue NB. 2011. Interplay between lysine methylation and Cdk phosphorylation in growth control by the retinoblastoma protein. EMBO J 30:317–327. http://dx.doi.org/10.1038/emboj.2010.311.
  • Munro S, Khaire N, Inche A, Carr S, La Thangue NB. 2010. Lysine methylation regulates the pRb tumour suppressor protein. Oncogene 29:2357–2367. http://dx.doi.org/10.1038/onc.2009.511.
  • Macdonald JI, Dick FA. 2012. Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer 3:619–633. http://dx.doi.org/10.1177/1947601912473305.
  • Saddic LA, West LE, Aslanian A, Yates JR, III, Rubin SM, Gozani O, Sage J. 2010. Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem 285:37733–37740. http://dx.doi.org/10.1074/jbc.M110.137612.
  • Wang X, Roberts CW. 2014. CARMA: CARM1 methylation of SWI/SNF in breast cancer. Cancer Cell 25:3–4. http://dx.doi.org/10.1016/j.ccr.2013.12.017.
  • Bedford MT, Clarke SG. 2009. Protein arginine methylation in mammals: who, what, and why. Mol Cell 33:1–13. http://dx.doi.org/10.1016/j.molcel.2008.12.013.
  • Chen D, Ma H, Hong H, Koh SS, Huang SM, Schurter BT, Aswad DW, Stallcup MR. 1999. Regulation of transcription by a protein methyltransferase. Science 284:2174–2177. http://dx.doi.org/10.1126/science.284.5423.2174.
  • Bauer UM, Daujat S, Nielsen SJ, Nightingale K, Kouzarides T. 2002. Methylation at arginine 17 of histone H3 is linked to gene activation. EMBO Rep 3:39–44. http://dx.doi.org/10.1093/embo-reports/kvf013.
  • Covic M, Hassa PO, Saccani S, Buerki C, Meier NI, Lombardi C, Imhof R, Bedford MT, Natoli G, Hottiger MO. 2005. Arginine methyltransferase CARM1 is a promoter-specific regulator of NF-κB-dependent gene expression. EMBO J 24:85–96. http://dx.doi.org/10.1038/sj.emboj.7600500.
  • Fauquier L, Duboe C, Jore C, Trouche D, Vandel L. 2008. Dual role of the arginine methyltransferase CARM1 in the regulation of c-Fos target genes. FASEB J 22:3337–3347. http://dx.doi.org/10.1096/fj.07-104604.
  • An W, Kim J, Roeder RG. 2004. Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117:735–748. http://dx.doi.org/10.1016/j.cell.2004.05.009.
  • El Messaoudi S, Fabbrizio E, Rodriguez C, Chuchana P, Fauquier L, Cheng D, Theillet C, Vandel L, Bedford MT, Sardet C. 2006. Coactivator-associated arginine methyltransferase 1 (CARM1) is a positive regulator of the cyclin E1 gene. Proc Natl Acad Sci U S A 103:13351–13356. http://dx.doi.org/10.1073/pnas.0605692103.
  • Frietze S, Lupien M, Silver PA, Brown M. 2008. CARM1 regulates estrogen-stimulated breast cancer growth through up-regulation of E2F1. Cancer Res 68:301–306. http://dx.doi.org/10.1158/0008-5472.CAN-07-1983.
  • Wang L, Zhao Z, Meyer MB, Saha S, Yu M, Guo A, Wisinski KB, Huang W, Cai W, Pike JW, Yuan M, Ahlquist P, Xu W. 2014. CARM1 methylates chromatin remodeling factor BAF155 to enhance tumor progression and metastasis. Cancer Cell 25:21–36. http://dx.doi.org/10.1016/j.ccr.2013.12.007.
  • Dillon MB, Rust HL, Thompson PR, Mowen KA. 2013. Automethylation of protein arginine methyltransferase 8 (PRMT8) regulates activity by impeding S-adenosylmethionine sensitivity. J Biol Chem 288:27872–27880. http://dx.doi.org/10.1074/jbc.M113.491092.
  • Izumiya Y, Ellison TJ, Yeh ET, Jung JU, Luciw PA, Kung HJ. 2005. Kaposi's sarcoma-associated herpesvirus K-bZIP represses gene transcription via SUMO modification. J Virol 79:9912–9925. http://dx.doi.org/10.1128/JVI.79.15.9912-9925.2005.
  • Izumiya Y, Izumiya C, Hsia D, Ellison TJ, Luciw PA, Kung HJ. 2009. NF-κB serves as a cellular sensor of Kaposi's sarcoma-associated herpesvirus latency and negatively regulates K-Rta by antagonizing the RBP-Jκ coactivator. J Virol 83:4435–4446. http://dx.doi.org/10.1128/JVI.01999-08.
  • Keller A, Nesvizhskii AI, Kolker E, Aebersold R. 2002. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392. http://dx.doi.org/10.1021/ac025747h.
  • Nesvizhskii AI, Keller A, Kolker E, Aebersold R. 2003. A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658. http://dx.doi.org/10.1021/ac0341261.
  • Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA, Reinberg D. 2004. Regulation of p53 activity through lysine methylation. Nature 432:353–360. http://dx.doi.org/10.1038/nature03117.
  • Campbell M, Chang PC, Huerta S, Izumiya C, Davis R, Tepper CG, Kim KY, Shevchenko B, Wang DH, Jung JU, Luciw PA, Kung HJ, Izumiya Y. 2012. Protein arginine methyltransferase 1-directed methylation of Kaposi sarcoma-associated herpesvirus latency-associated nuclear antigen. J Biol Chem 287:5806–5818. http://dx.doi.org/10.1074/jbc.M111.289496.
  • Lee YH, Koh SS, Zhang X, Cheng X, Stallcup MR. 2002. Synergy among nuclear receptor coactivators: selective requirement for protein methyltransferase and acetyltransferase activities. Mol Cell Biol 22:3621–3632. http://dx.doi.org/10.1128/MCB.22.11.3621-3632.2002.
  • Parfitt DE, Zernicka-Goetz M. 2010. Epigenetic modification affecting expression of cell polarity and cell fate genes to regulate lineage specification in the early mouse embryo. Mol Biol Cell 21:2649–2660. http://dx.doi.org/10.1091/mbc.E10-01-0053.
  • Lee YH, Bedford MT, Stallcup MR. 2011. Regulated recruitment of tumor suppressor BRCA1 to the p21 gene by coactivator methylation. Genes Dev 25:176–188. http://dx.doi.org/10.1101/gad.1975811.
  • Yoshimoto T, Boehm M, Olive M, Crook MF, San H, Langenickel T, Nabel EG. 2006. The arginine methyltransferase PRMT2 binds RB and regulates E2F function. Exp Cell Res 312:2040–2053. http://dx.doi.org/10.1016/j.yexcr.2006.03.001.
  • Yamagata K, Daitoku H, Takahashi Y, Namiki K, Hisatake K, Kako K, Mukai H, Kasuya Y, Fukamizu A. 2008. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt. Mol Cell 32:221–231. http://dx.doi.org/10.1016/j.molcel.2008.09.013.
  • Kowenz-Leutz E, Pless O, Dittmar G, Knoblich M, Leutz A. 2010. Crosstalk between C/EBPβ phosphorylation, arginine methylation, and SWI/SNF/Mediator implies an indexing transcription factor code. EMBO J 29:1105–1115. http://dx.doi.org/10.1038/emboj.2010.3.
  • Arita K, Isogai S, Oda T, Unoki M, Sugita K, Sekiyama N, Kuwata K, Hamamoto R, Tochio H, Sato M, Ariyoshi M, Shirakawa M. 2012. Recognition of modification status on a histone H3 tail by linked histone reader modules of the epigenetic regulator UHRF1. Proc Natl Acad Sci U S A 109:12950–12955. http://dx.doi.org/10.1073/pnas.1203701109.
  • Park YB, Park MJ, Kimura K, Shimizu K, Lee SH, Yokota J. 2002. Alterations in the INK4a/ARF locus and their effects on the growth of human osteosarcoma cell lines. Cancer Genet Cytogenet 133:105–111. http://dx.doi.org/10.1016/S0165-4608(01)00575-1.
  • Bedford MT, Richard S. 2005. Arginine methylation an emerging regulator of protein function. Mol Cell 18:263–272. http://dx.doi.org/10.1016/j.molcel.2005.04.003.
  • Levy D, Liu CL, Yang Z, Newman AM, Alizadeh AA, Utz PJ, Gozani O. 2011. A proteomic approach for the identification of novel lysine methyltransferase substrates. Epigenetics Chromatin 4:19. http://dx.doi.org/10.1186/1756-8935-4-19.
  • Reference deleted.
  • Cho HS, Hayami S, Toyokawa G, Maejima K, Yamane Y, Suzuki T, Dohmae N, Kogure M, Kang D, Neal DE, Ponder BA, Yamaue H, Nakamura Y, Hamamoto R. 2012. RB1 methylation by SMYD2 enhances cell cycle progression through an increase of RB1 phosphorylation. Neoplasia 14:476–486.
  • Zheng S, Moehlenbrink J, Lu YC, Zalmas LP, Sagum CA, Carr S, McGouran JF, Alexander L, Fedorov O, Munro S, Kessler B, Bedford MT, Yu Q, La Thangue NB. 2013. Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol Cell 52:37–51. http://dx.doi.org/10.1016/j.molcel.2013.08.039.
  • Yang Y, Bedford MT. 2013. Protein arginine methyltransferases and cancer. Nat Rev Cancer 13:37–50. http://dx.doi.org/10.1038/nrc3409.
  • Streubel G, Bouchard C, Berberich H, Zeller MS, Teichmann S, Adamkiewicz J, Muller R, Klempnauer KH, Bauer UM. 2013. PRMT4 is a novel coactivator of c-Myb-dependent transcription in haematopoietic cell lines. PLoS Genet 9:e1003343. http://dx.doi.org/10.1371/journal.pgen.1003343.
  • Feng Q, He B, Jung SY, Song Y, Qin J, Tsai SY, Tsai MJ, O'Malley BW. 2009. Biochemical control of CARM1 enzymatic activity by phosphorylation. J Biol Chem 284:36167–36174. http://dx.doi.org/10.1074/jbc.M109.065524.
  • Higashimoto K, Kuhn P, Desai D, Cheng X, Xu W. 2007. Phosphorylation-mediated inactivation of coactivator-associated arginine methyltransferase 1. Proc Natl Acad Sci U S A 104:12318–12323. http://dx.doi.org/10.1073/pnas.0610792104.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.