35
Views
35
CrossRef citations to date
0
Altmetric
Article

Phosphorylation-Regulated Transitions in an Oligomeric State Control the Activity of the Sae2 DNA Repair Enzyme

, , , , , , , & show all
Pages 778-793 | Received 31 Jul 2013, Accepted 02 Dec 2013, Published online: 20 Mar 2023

REFERENCES

  • Symington LS, Gautier J. 2011. Double-strand break end resection and repair pathway choice. Annu. Rev. Genet. 45:247–271. http://dx.doi.org/10.1146/annurevgenet-110410-132435.
  • Wohlbold L, Fisher RP. 2009. Behind the wheel and under the hood: functions of cyclin-dependent kinases in response to DNA damage. DNA Repair 8:1018–1024. http://dx.doi.org/10.1016/j.dnarep.2009.04.009.
  • Aylon Y, Liefshitz B, Kupiec M. 2004. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 23:4868–4875. http://dx.doi.org/10.1038/sj.emboj.7600469.
  • Ira G, Pellicioli A, Balijja A, Wang X, Fiorani S, Carotenuto W, Liberi G, Bressan D, Wan L, Hollingsworth NM, Haber JE, Foiani M. 2004. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431:1011–1017. http://dx.doi.org/10.1038/nature02964.
  • Huertas P, Cortes-Ledesma F, Sartori AA, Aguilera A, Jackson SP. 2008. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455:689–692. http://dx.doi.org/10.1038/nature07215.
  • Chen X, Niu H, Chung WH, Zhu Z, Papusha A, Shim EY, Lee SE, Sung P, Ira G. 2011. Cell cycle regulation of DNA double-strand break end resection by Cdk1-dependent Dna2 phosphorylation. Nat. Struct. Mol. Biol. 18:1015–1019. http://dx.doi.org/10.1038/nsmb.2105.
  • Matsuzaki K, Terasawa M, Iwasaki D, Higashide M, Shinohara M. 2012. Cyclin-dependent kinase-dependent phosphorylation of Lif1 and Sae2 controls imprecise nonhomologous end joining accompanied by double-strand break resection. Genes Cells 17:473–493. http://dx.doi.org/10.1111/j.1365-2443.2012.01602.x.
  • Moore JK, Haber JE. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2164–2173.
  • Barlow JH, Lisby M, Rothstein R. 2008. Differential regulation of the cellular response to DNA double-strand breaks in G1. Mol. Cell 30:73–85. http://dx.doi.org/10.1016/j.molcel.2008.01.016.
  • Krogh BO, Symington LS. 2004. Recombination proteins in yeast. Annu. Rev. Genet. 38:233–271. http://dx.doi.org/10.1146/annurev.genet.38.072902.091500.
  • Zhu Z, Chung WH, Shim EY, Lee SE, Ira G. 2008. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134:981–994. http://dx.doi.org/10.1016/j.cell.2008.08.037.
  • Paull TT. 2010. Making the best of the loose ends: Mre11/Rad50 complexes and Sae2 promote DNA double-strand break resection. DNA Repair 9:1283–1291. http://dx.doi.org/10.1016/j.dnarep.2010.09.015.
  • Mimitou EP, Symington LS. 2009. DNA end resection: many nucleases make light work. DNA Repair 8:983–995. http://dx.doi.org/10.1016/j.dnarep.2009.04.017.
  • Baroni E, Viscardi V, Cartagena-Lirola H, Lucchini G, Longhese MP. 2004. The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol. Cell. Biol. 24:4151–4165. http://dx.doi.org/10.1128/MCB.24.10.4151-4165.2004.
  • Lengsfeld BM, Rattray AJ, Bhaskara V, Ghirlando R, Paull TT. 2007. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol. Cell 28:638–651. http://dx.doi.org/10.1016/j.molcel.2007.11.001.
  • Rattray AJ, McGill CB, Shafer BK, Strathern JN. 2001. Fidelity of mitotic double-strand-break repair in Saccharomyces cerevisiae: a role for SAE2/COM1. Genetics 158:109–122.
  • Rattray AJ, Shafer BK, Neelam B, Strathern JN. 2005. A mechanism of palindromic gene amplification in Saccharomyces cerevisiae. Genes Dev. 19:1390–1399. http://dx.doi.org/10.1101/gad.1315805.
  • Lobachev KS, Gordenin DA, Resnick MA. 2002. The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108:183–193. http://dx.doi.org/10.1016/S0092-8674(02)00614-1.
  • McKee AH, Kleckner N. 1997. A general method for identifying recessive diploid-specific mutations in Saccharomyces cerevisiae, its application to the isolation of mutants blocked at intermediate stages of meiotic prophase and characterization of a new gene SAE2. Genetics 146:797–816.
  • Prinz S, Amon A, Klein F. 1997. Isolation of COM1, a new gene required to complete meiotic double-strand break-induced recombination in Saccharomyces cerevisiae. Genetics 146:781–795.
  • Neale MJ, Pan J, Keeney S. 2005. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436:1053–1057. http://dx.doi.org/10.1038/nature03872.
  • Nicolette ML, Lee K, Guo Z, Rani M, Chow JM, Lee SE, Paull TT. 2010. Mre11-Rad50-Xrs2 and Sae2 promote 5′ strand resection of DNA double-strand breaks. Nat. Struct. Mol. Biol. 17:1478–1485. http://dx.doi.org/10.1038/nsmb.1957.
  • Shen X. 2004. Preparation and analysis of the INO80 complex. Methods Enzymol. 377:401–412. http://dx.doi.org/10.1016/S0076-6879(03)77026-8.
  • Hopkins B, Paull TT. 2008. The P. furiosus Mre11/Rad50 complex promotes 5′ strand resection at a DNA double-strand break. Cell 135:250–260. http://dx.doi.org/10.1016/j.cell.2008.09.054.
  • Giaever G, Chu AM, Ni L, Connelly C, Riles L, Veronneau S, Dow S, Lucau-Danila A, Anderson K, Andre B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian KD, Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Guldener U, Hegemann JH, Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kotter P, LaBonte D, Lamb DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, et al. 2002. Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387–391. http://dx.doi.org/10.1038/nature00935.
  • Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Christianson TW, Sikorski RS, Dante M, Shero JH, Hieter P. 1992. Multifunctional yeast high-copy-number shuttle vectors. Gene 110:119–122. http://dx.doi.org/10.1016/0378-1119(92)90454-W.
  • Lisby M, Barlow JH, Burgess RC, Rothstein R. 2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699–713. http://dx.doi.org/10.1016/j.cell.2004.08.015.
  • Reid RJ, Lisby M, Rothstein R. 2002. Cloning-free genome alterations in Saccharomyces cerevisiae using adaptamer-mediated PCR. Methods Enzymol. 350:258–277.
  • Kim HS, Vijayakumar S, Reger M, Harrison JC, Haber JE, Weil C, Petrini JH. 2008. Functional interactions between Sae2 and the Mre11 complex. Genetics 178:711–723. http://dx.doi.org/10.1534/genetics.107.081331.
  • Foiani M, Marini F, Gamba D, Lucchini G, Plevani P. 1994. The B subunit of the DNA polymerase alpha-primase complex in Saccharomyces cerevisiae executes an essential function at the initial stage of DNA replication. Mol. Cell. Biol. 14:923–933.
  • Lee JH, Paull TT. 2005. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308:551–554. http://dx.doi.org/10.1126/science.1108297.
  • Kinoshita E, Kinoshita-Kikuta E, Matsubara M, Yamada S, Nakamura H, Shiro Y, Aoki Y, Okita K, Koike T. 2008. Separation of phosphoprotein isotypes having the same number of phosphate groups using phosphate-affinity SDS-PAGE. Proteomics 8:2994–3003. http://dx.doi.org/10.1002/pmic.200800243.
  • Xie Z, Klionsky DJ. 2007. Autophagosome formation: core machinery and adaptations. Nat. Cell Biol. 9:1102–1109. http://dx.doi.org/10.1038/ncb1007-1102.
  • Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, Botrugno OA, Parazzoli D, Oldani A, Minucci S, Foiani M. 2011. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471:74–79. http://dx.doi.org/10.1038/nature09803.
  • Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O'Shea EK, Weissman JS. 2003. Global analysis of protein expression in yeast. Nature 425:737–741. http://dx.doi.org/10.1038/nature02046.
  • Gilbert CS, Green CM, Lowndes NF. 2001. Budding yeast Rad9 is an ATP-dependent Rad53 activating machine. Mol. Cell 8:129–136. http://dx.doi.org/10.1016/S1097-2765(01)00267-2.
  • Tartaglia GG, Pechmann S, Dobson CM, Vendruscolo M. 2007. Life on the edge: a link between gene expression levels and aggregation rates of human proteins. Trends Biochem. Sci. 32:204–206. http://dx.doi.org/10.1016/j.tibs.2007.03.005.
  • Chiti F, Dobson CM. 2006. Protein misfolding, functional amyloid, and human disease. Annu. Rev. Biochem. 75:333–366. http://dx.doi.org/10.1146/annurev.biochem.75.101304.123901.
  • Invernizzi G, Papaleo E, Sabate R, Ventura S. 2012. Protein aggregation: mechanisms and functional consequences. Int. J. Biochem. Cell Biol. 44:1541–1554. http://dx.doi.org/10.1016/j.biocel.2012.05.023.
  • David DC. 2012. Aging and the aggregating proteome. Front. Genet. 3:247. http://dx.doi.org/10.3389/fgene.2012.00247.
  • Sanchez de Groot N, Torrent M, Villar-Pique A, Lang B, Ventura S, Gsponer J, Babu MM. 2012. Evolutionary selection for protein aggregation. Biochem. Soc. Trans. 40:1032–1037. http://dx.doi.org/10.1042/BST20120160.
  • Hashimoto K, Nishi H, Bryant S, Panchenko AR. 2011. Caught in self-interaction: evolutionary and functional mechanisms of protein homooligomerization. Phys. Biol. 8:035007. http://dx.doi.org/10.1088/1478-3975/8/3/035007.
  • You Z, Bailis JM. 2010. DNA damage and decisions: CtIP coordinates DNA repair and cell cycle checkpoints. Trends Cell Biol. 20:402–409. http://dx.doi.org/10.1016/j.tcb.2010.04.002.
  • Steger M, Murina O, Huhn D, Ferretti LP, Walser R, Hanggi K, Lafranchi L, Neugebauer C, Paliwal S, Janscak P, Gerrits B, Del Sal G, Zerbe O, Sartori AA. 2013. Prolyl isomerase PIN1 regulates DNA double-strand break repair by counteracting DNA end resection. Mol. Cell 50:333–343. http://dx.doi.org/10.1016/j.molcel.2013.03.023.
  • Adams A, Gottschling DE, Kaiser C. 1997. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.