57
Views
92
CrossRef citations to date
0
Altmetric
Article

H19 Long Noncoding RNA Regulates Intestinal Epithelial Barrier Function via MicroRNA 675 by Interacting with RNA-Binding Protein HuR

, , , , , , , & show all
Pages 1332-1341 | Received 24 Nov 2015, Accepted 12 Feb 2016, Published online: 17 Mar 2023

REFERENCES

  • Ponting CP, Oliver PL, Reik W. 2009. Evolution and functions of long noncoding RNAs. Cell 136:629–641. http://dx.doi.org/10.1016/j.cell.2009.02.006.
  • Wang KC, Chang HY. 2011. Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914. http://dx.doi.org/10.1016/j.molcel.2011.08.018.
  • Ulitsky I, Bartel DP. 2013. LincRNAs: genomics, evolution, and mechanisms. Cell 154:26–46. http://dx.doi.org/10.1016/j.cell.2013.06.020.
  • Batista PJ, Chang HY. 2013. Long noncoding RNAs: cellular address codes in development and disease. Cell 152:1298–1307. http://dx.doi.org/10.1016/j.cell.2013.02.012.
  • Esteller M. 2011. Non-coding RNAs in human disease. Nat Rev Genet 12:861–874. http://dx.doi.org/10.1038/nrg3074.
  • Ørom UA, Derrien Beringer T, Gumireddy M, Gardini K, Bussotti A, Lai G, Zytnicki F, Notredame M, Huang CQ, Guigo R, Shiekhattar R. 2010. Long noncoding RNAs with enhancer-like function in human cells. Cell 143:46–58. http://dx.doi.org/10.1016/j.cell.2010.09.001.
  • Yoon JH, Abdelmohsen K, Srikantan S, Yang X, Martindale JL, De S, Huarte M, Zhan M, Becker KG, Gorospe M. 2012. LncRNA-p21 suppresses target mRNA translation. Mol Cell 47:648–655. http://dx.doi.org/10.1016/j.molcel.2012.06.027.
  • Abdelmohsen K, Panda AC, Kang MJ, Guo R, Kim J, Grammatikakis I, Yoon JH, Dudekula DB, Noh JH, Yang X, Martindale JL, Gorospe M. 2014. 7SL RNA represses p53 translation by competing with HuR. Nucleic Acids Res 42:10099–10111. http://dx.doi.org/10.1093/nar/gku686.
  • Liu X, Li D, Zhang W, Guo M, Zhan Q. 2012. Long noncoding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. EMBO J 31:4415–4427. http://dx.doi.org/10.1038/emboj.2012.292.
  • Turner JR. 2009. Intestinal mucosal barrier function in health and disease. Nat Rev Immunol 9:799–809. http://dx.doi.org/10.1038/nri2653.
  • Yang H, Rao JN, Wang JY. 2014. Posttranscriptional regulation of intestinal epithelial tight junction barrier by RNA-binding proteins and microRNAs. Tissue Barriers 2:e28320. http://dx.doi.org/10.4161/tisb.28320.
  • Carter SR, Zahs A, Palmer JL, Wang L, Ramirez L, Gamelli RL, Kovacs EJ. 2013. Intestinal barrier disruption as a cause of mortality in combined radiation and burn injury. Shock 40:281–289. http://dx.doi.org/10.1097/SHK.0b013e3182a2c5b5.
  • Schneeberger EE, Lynch RD. 2004. The tight junction: a multifunctional complex. Am J Physiol Cell Physiol 286:C1213–C1228. http://dx.doi.org/10.1152/ajpcell.00558.2003.
  • Furuse M, Izumi Y, Oda Y, Higashi T, Iwamoto N. 2014. Molecular organization of tricellular tight junctions. Tissue Barriers 2:e28960. http://dx.doi.org/10.4161/tisb.28960.
  • Tian X, Liu Z, Niu B, Zhang J, Tan TK, Lee SR, Zhao Y, Harris DC, Zheng G. 2011. E-cadherin/β-catenin complex and the epithelial barrier. J Biomed Biotechnol 2011:567305.
  • Bhatt T, Rizvi A, Batta SP, Kataria S, Jamora C. 2013. Signaling and mechanical roles of E-cadherin. Cell Commun Adhes 20:189–199. http://dx.doi.org/10.3109/15419061.2013.854778.
  • Oldenburger A, Poppinga WJ, Kos F, de Bruin HG, Rijks WF, Heijink IH, Timens W, Meurs H, Maarsingh H, Schmidt M. 2014. A-kinase anchoring proteins contribute to loss of E-cadherin and bronchial epithelial barrier by cigarette smoke. Am J Physiol Cell Physiol 306:C585–C597. http://dx.doi.org/10.1152/ajpcell.00183.2013.
  • Chen J, Xiao L, Rao JN, Zou T, Liu L, Bellavance E, Gorospe M, Wang JY. 2008. JunD represses transcription and translation of the tight junction protein zona occludens-1 modulating intestinal epithelial barrier function. Mol Biol Cell 19:3701–3712. http://dx.doi.org/10.1091/mbc.E08-02-0175.
  • Yu TX, Wang PY, Rao JN, Zou T, Liu L, Xiao L, Gorospe M, Wang JY. 2011. Chk2-dependent HuR phosphorylation regulates occludin mRNA translation and epithelial barrier function. Nucleic Acids Res 39:8472–8487. http://dx.doi.org/10.1093/nar/gkr567.
  • Ye D, Guo S, Al-Sadi R, Ma TY. 2011. MicroRNA regulation of intestinal epithelial tight junction permeability. Gastroenterology 141:1323–1333. http://dx.doi.org/10.1053/j.gastro.2011.07.005.
  • Leighton PA, Ingram RS, Eggenschwiler J, Efstratiadis A, Tilghman SM. 1995. Disruption of imprinting caused by deletion of the H19 gene region in mice. Nature 375:34–39. http://dx.doi.org/10.1038/375034a0.
  • Brannan CI, Dees EC, Ingram RS, Tilghman SM. 1990. The product of the H19 gene may function as an RNA. Mol Cell Biol 10:28–36. http://dx.doi.org/10.1128/MCB.10.1.28.
  • Gabory A, Jammes H, Dandolo L. 2010. The H19 locus: role of an imprinted non-coding RNA in growth and development. Bioessays 32:473–480. http://dx.doi.org/10.1002/bies.200900170.
  • Onyango P, Feinberg AP. 2011. A nucleolar protein, H19 opposite tumor suppressor (HOTS), is a tumor growth inhibitor encoded by a human imprinted H19 antisense transcript. Proc Natl Acad Sci U S A 108:16759–16764. http://dx.doi.org/10.1073/pnas.1110904108.
  • Yan L, Zhou J, Gao Y, Ghazal S, Lu L, Bellone S, Yang Y, Liu N, Zhao X, Santin AD, Taylor H, Huang Y. 2015. Regulation of tumor cell migration and invasion by the H19/let-7 axis is antagonized by metformin-induced DNA methylation. Oncogene 34:3076–3084. http://dx.doi.org/10.1038/onc.2014.236.
  • Luo M, Li Z, Wang W, Zeng Y, Liu Z, Qiu J. 2013. Long non-coding RNA H19 increases bladder cancer metastasis by associating with EZH2 and inhibiting E-cadherin expression. Cancer Lett 333:213–221. http://dx.doi.org/10.1016/j.canlet.2013.01.033.
  • Zhu M, Chen Q, Liu X, Sun Q, Zhao X, Deng R, Wang Y, Huang J, Xu M, Yan J, Yu J. 2014. lncRNA H19/miR-675 axis represses prostate cancer metastasis by targeting TGFBI. FEBS J 281:3766–3775. http://dx.doi.org/10.1111/febs.12902.
  • Ghazal S, McKinnon B, Zhou J, Mueller M, Men Y, Yang L, Mueller M, Flannery C, Huang Y, Taylor HS. 2015. H19 lncRNA alters stromal cell growth via IGF signaling in the endometrium of women with endometriosis. EMBO Mol Med 7:996–1003. http://dx.doi.org/10.15252/emmm.201505245.
  • Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, Galun E. 2007. The H19 non-coding RNA is essential for human tumor growth. PLoS One 2:e845. http://dx.doi.org/10.1371/journal.pone.0000845.
  • Keniry A, Oxley D, Monnier P, Kyba M, Dandolo L, Smits G, Reik W. 2012. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat Cell Biol 14:659–665. http://dx.doi.org/10.1038/ncb2521.
  • Yoshimizu T, Miroglio A, Ripoche MA, Gabory A, Vernucci M, Riccio A, Colnot S, Godard C, Terris B, Jammes H, Dandolo L. 2008. The H19 locus acts in vivo as a tumor suppressor. Proc Natl Acad Sci U S A 105:12417–12422. http://dx.doi.org/10.1073/pnas.0801540105.
  • Gabory A, Ripoche MA, Le Digarcher A, Watrin F, Ziyyat A, Forné T, Jammes H, Ainscough JF, Surani MA, Journot L, Dandolo L. 2009. H19 acts as a trans-regulator of the imprinted gene network controlling growth in mice. Development 136:3413–3421. http://dx.doi.org/10.1242/dev.036061.
  • Dey BK, Pfeifer K, Dutta A. 2014. The H19 long noncoding RNA gives rise to microRNAs miR-675-3p and miR-675-5p to promote skeletal muscle differentiation and regeneration. Genes Dev 28:491–501. http://dx.doi.org/10.1101/gad.234419.113.
  • Gao Y, Wu F, Zhou J, Yan L, Jurczak MJ, Lee HY, Yang L, Mueller M, Zhou XB, Dandolo L, Szendroedi J, Roden M, Flannery C, Taylor H, Carmichael GG, Shulman GI, Huang Y. 2014. The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells. Nucleic Acids Res 42:13799–13811. http://dx.doi.org/10.1093/nar/gku1160.
  • Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, Min W, Bennett AM, Gregory RI, Ding Y, Huang Y. 2013. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Mol Cell 52:101–112. http://dx.doi.org/10.1016/j.molcel.2013.08.027.
  • Liu L, Christodoulou-Vafeiadou E, Rao JN, Zou T, Xiao L, Chung HK, Yang H, Gorospe M, Kontoyiannis D, Wang JY. 2014. RNA-binding protein HuR promotes growth of small intestinal mucosa by activating the Wnt signaling pathway. Mol Biol Cell 25:3308–3318. http://dx.doi.org/10.1091/mbc.E14-03-0853.
  • Yu TX, Rao JN, Zou T, Liu L, Xiao L, Ouyang M, Cao S, Gorospe M, Wang JY. 2013. Competitive binding of CUGBP1 and HuR to occludin mRNA controls its translation and modulates epithelial barrier function. Mol Biol Cell 24:85–99. http://dx.doi.org/10.1091/mbc.E12-07-0531.
  • Cao S, Xiao L, Rao JN, Zou T, Liu L, Zhang D, Turner DJ, Gorospe M, Wang JY. 2014. Inhibition of Smurf2 translation by miR-322/503 modulates TGF-β/Smad2 signaling and intestinal epithelial homeostasis. Mol Biol Cell 25:1234–1243. http://dx.doi.org/10.1091/mbc.E13-09-0560.
  • Xiao L, Rao JN, Zou T, Liu L, Cao S, Martindale JL, Su W, Chung HK, Gorospe M, Wang JY. 2013. miR-29b represses intestinal mucosal growth by inhibiting translation of cyclin-dependent kinase 2. Mol Biol Cell 24:3038–3046. http://dx.doi.org/10.1091/mbc.E13-05-0287.
  • Liu L, Ouyang M, Rao JN, Zou T, Xiao L, Chung HK, Wu J, Donahue JM, Gorospe M, Wang JY. 2015. Competition between RNA-binding proteins CELF1 and HuR modulates MYC translation and intestinal epithelium renewal. Mol Biol Cell 26:1797–1810. http://dx.doi.org/10.1091/mbc.E14-11-1500.
  • Cui YH, Xiao L, Rao JN, Zou T, Liu L, Chen Y, Turner DJ, Gorospe M, Wang JY. 2012. miR-503 represses CUG-binding protein 1 translation by recruiting CUGBP1 mRNA to processing bodies. Mol Biol Cell 23:151–162. http://dx.doi.org/10.1091/mbc.E11-05-0456.
  • Guo X, Rao JN, Liu L, Zou TT, Turner DJ, Bass BL, Wang JY. 2003. Regulation of adherens junctions and epithelial paracellular permeability: a novel function for polyamines. Am J Physiol Cell Physiol 285:C1174–C1187. http://dx.doi.org/10.1152/ajpcell.00015.2003.
  • Chung HK, Chen Y, Rao JN, Liu L, Xiao L, Turner DJ, Yang P, Gorospe M, Wang JY. 2015. Transgenic expression of miR-222 disrupts intestinal epithelial regeneration by targeting multiple genes including Frizzled-7. Mol Med 21:676–687. http://dx.doi.org/10.2119/molmed.2015.00147.
  • Hart ML, Grenz A, Gorzolla IC, Schittenhelm J, Dalton JH, Eltzschig HK. 2011. Hypoxia-inducible factor-1α-dependent protection from intestinal ischemia/reperfusion injury involves ecto-5′-nucleotidase (CD73) and the A2B adenosine receptor. J Immunol 186:4367–4374. http://dx.doi.org/10.4049/jimmunol.0903617.
  • Harter JL. 1960. Critical values for Duncan's new multiple range tests. Biometric 16:671–685. http://dx.doi.org/10.2307/2527770.
  • Pochard C, Coquenlorge S, Jaulin J, Cenac N, Vergnolle N, Meurette G, Freyssinet M, Neunlist M, Rolli-Derkinderen M. 2015. Defects in 15-HETE production and control of epithelial permeability by human enteric glial cells from patients with Crohn's disease. Gastroenterology 150:168–180.
  • Jain S, Suzuki T, Seth A, Samak G, Rao R. 2011. Protein kinase Cζ phosphorylates occludin and promotes assembly of epithelial tight junctions. Biochem J 437:289–299. http://dx.doi.org/10.1042/BJ20110587.
  • Zou T, Rao JN, Liu L, Xiao L, Chung HK, Li Y, Chen G, Gorospe M, Wang JY. 2015. JunD enhances miR-29b levels transcriptionally and posttranscriptionally to inhibit proliferation of intestinal epithelial cells. Am J Physiol Cell Physiol 308:C813–C824. http://dx.doi.org/10.1152/ajpcell.00027.2015.
  • Mosenthal AC, Xu D, Deitch EA. 2002. Elemental and intravenous total parenteral nutrition diet-induced gut barrier failure is intestinal site specific and can be prevented by feeding nonfermentable fiber. Crit Care Med 30:396–402. http://dx.doi.org/10.1097/00003246-200202000-00022.
  • Cai X, Cullen BR. 2007. The imprinted H19 noncoding RNA is a primary microRNA precursor. RNA 13:313–316. http://dx.doi.org/10.1261/rna.351707.
  • Varrault A, Gueydan C, Delalbre A, Bellmann A, Houssami S, Aknin C, Severac D, Chotard L, Kahli M, Le Digarcher A, Pavlidis P, Journot L. 2006. Zac1 regulates an imprinted gene network critically involved in the control of embryonic growth. Dev Cell 11:711–722. http://dx.doi.org/10.1016/j.devcel.2006.09.003.
  • Monnier P, Martinet C, Pontis J, Stancheva I, Ait-Si-Ali S, Dandolo L. 2013. H19 lncRNA controls gene expression of the Imprinted Gene Network by recruiting MBD1. Proc Natl Acad Sci U S A 110:20693–20698. http://dx.doi.org/10.1073/pnas.1310201110.
  • Shi Y, Wang Y, Luan W, Wang P, Tao T, Zhang J, Qian J, Liu N, You Y. 2014. Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One 9:e86295. http://dx.doi.org/10.1371/journal.pone.0086295.
  • Xiao L, Cui YH, Rao JN, Zou T, Liu L, Smith A, Turner DJ, Gorospe M, Wang JY. 2011. Regulation of cyclin-dependent kinase 4 translation through CUG-binding protein 1 and microRNA-222 by polyamines. Mol Biol Cell 22:3055–3069. http://dx.doi.org/10.1091/mbc.E11-01-0069.
  • Zhuang R, Rao JN, Zou T, Liu L, Xiao L, Cao S, Hansraj NZ, Gorospe M, Wang JY. 2013. miR-195 competes with HuR to modulate stim1 mRNA stability and regulate cell migration. Nucleic Acids Res 41:7905–7919. http://dx.doi.org/10.1093/nar/gkt565.
  • Kulkarni M, Ozgur S, Stoecklin G. 2010. On track with P-bodies. Biochem Soc Trans 38:242–251. http://dx.doi.org/10.1042/BST0380242.
  • Mukherjee N, Corcoran DL, Nusbaum JD, Reid DW, Georgiev S, Hafner M, Ascano M, Jr, Tuschl T, Ohler U, Keene JD. 2011. Integrative regulatory mapping indicates that the RNA-binding protein HuR couples pre-mRNA processing and mRNA stability. Mol Cell 43:327–339. http://dx.doi.org/10.1016/j.molcel.2011.06.007.
  • Srikantan S, Gorospe M. 2012. HuR function in disease. Front Biosci 17:189–205. http://dx.doi.org/10.2741/3921.
  • Kim HH, Kuwano Y, Srikantan S, Lee EK, Martindale JL, Gorospe M. 2009. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev 23:1743–1748. http://dx.doi.org/10.1101/gad.1812509.
  • Liu L, Rao JN, Zou T, Xiao L, Wang PY, Turner DJ, Gorospe M, Wang JY. 2009. Polyamines regulate c-Myc translation through Chk2-dependent HuR phosphorylation. Mol Biol Cell 20:4885–4898. http://dx.doi.org/10.1091/mbc.E09-07-0550.
  • Choudhury NR, de Lima Alves F, de Andrés-Aguayo L, Graf T, Cáceres JF, Rappsilber J, Michlewski G. 2013. Tissue-specific control of brain-enriched miR-7 biogenesis. Genes Dev 27:24–38. http://dx.doi.org/10.1101/gad.199190.112.
  • Yu TX, Gu BL, Yan JK, Zhu J, Yan WH, Chen J, Qian LX, Cai W. 2016. CUGBP1 and HuR regulate E-cadherin translation by altering recruitment of E-cadherin mRNA to processing bodies and modulate epithelial barrier function. Am J Physiol Cell Physiol 310:C54–C65.
  • Xiao L, Rao JN, Cao S, Liu L, Chung HK, Zhang Y, Zhang J, Liu Y, Gorospe M, Wang JY. 2016. Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins. Mol Biol Cell 27:617–626.
  • Zhang J, Yuan C, Hua G, Tong R, Luo X, Ying Z. 2010. Early gut barrier dysfunction in patients with severe acute pancreatitis: attenuated by continuous blood purification treatment. Int J Artif Organs 33:706–715.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.