136
Views
34
CrossRef citations to date
0
Altmetric
Article

Nucleosome Spacing Generated by ISWI and CHD1 Remodelers Is Constant Regardless of Nucleosome Density

, , , , , , & show all
Pages 1588-1605 | Received 19 Aug 2014, Accepted 14 Feb 2015, Published online: 20 Mar 2023

REFERENCES

  • Kornberg RD, Lorch Y. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294. http://dx.doi.org/10.1016/S0092-8674(00)81958-3.
  • Van Holde KE. 1988. Chromatin, 1st ed. Springer, New York, NY.
  • Jiang C, Pugh BF. 2009. Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10:161–172. http://dx.doi.org/10.1038/nrg2522.
  • Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF. 2008. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18:1073–1083. http://dx.doi.org/10.1101/gr.078261.108.
  • Struhl K, Segal E. 2013. Determinants of nucleosome positioning. Nat Struct Mol Biol 20:267–273. http://dx.doi.org/10.1038/nsmb.2506.
  • Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ. 2010. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8:e1000414. http://dx.doi.org/10.1371/journal.pbio.1000414.
  • Lantermann AB, Straub T, Stralfors A, Yuan GC, Ekwall K, Korber P. 2010. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 17:251–257. http://dx.doi.org/10.1038/nsmb.1741.
  • Valouev A, Johnson SM, Boyd SD, Smith CL, Fire AZ, Sidow A. 2011. Determinants of nucleosome organization in primary human cells. Nature 474:516–520. http://dx.doi.org/10.1038/nature10002.
  • Berbenetz NM, Nislow C, Brown GW. 2010. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet 6:e1001092. http://dx.doi.org/10.1371/journal.pgen.1001092.
  • Eaton ML, Galani K, Kang S, Bell SP, MacAlpine DM. 2010. Conserved nucleosome positioning defines replication origins. Genes Dev 24:748–753. http://dx.doi.org/10.1101/gad.1913210.
  • Bassett A, Cooper S, Wu C, Travers A. 2009. The folding and unfolding of eukaryotic chromatin. Curr Opin Genet Dev 19:159–165. http://dx.doi.org/10.1016/j.gde.2009.02.010.
  • Grigoryev SA. 2012. Nucleosome spacing and chromatin higher-order folding. Nucleus 3:493–499. http://dx.doi.org/10.4161/nucl.22168.
  • Korber P, Becker PB. 2010. Nucleosome dynamics and epigenetic stability. Essays Biochem 48:63–74. http://dx.doi.org/10.1042/bse0480063.
  • Routh A, Sandin S, Rhodes D. 2008. Nucleosome repeat length and linker histone stoichiometry determine chromatin fiber structure. Proc Natl Acad Sci U S A 105:8872–8877. http://dx.doi.org/10.1073/pnas.0802336105.
  • Sun FL, Cuaycong MH, Elgin SC. 2001. Long-range nucleosome ordering is associated with gene silencing in Drosophila melanogaster pericentric heterochromatin. Mol Cell Biol 21:2867–2879. http://dx.doi.org/10.1128/MCB.21.8.2867-2879.2001.
  • Hennig BP, Bendrin K, Zhou Y, Fischer T. 2012. Chd1 chromatin remodelers maintain nucleosome organization and repress cryptic transcription. EMBO Rep 13:997–1003. http://dx.doi.org/10.1038/embor.2012.146.
  • Pointner J, Persson J, Prasad P, Norman-Axelsson U, Stralfors A, Khorosjutina O, Krietenstein N, Svensson JP, Ekwall K, Korber P. 2012. CHD1 remodelers regulate nucleosome spacing in vitro and align nucleosomal arrays over gene coding regions in S. pombe. EMBO J 31:4388–4403. http://dx.doi.org/10.1038/emboj.2012.289.
  • Shim YS, Choi Y, Kang K, Cho K, Oh S, Lee J, Grewal SI, Lee D. 2012. Hrp3 controls nucleosome positioning to suppress non-coding transcription in eu- and heterochromatin. EMBO J 31:4375–4387. http://dx.doi.org/10.1038/emboj.2012.267.
  • Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, Florens L, Washburn MP, Workman JL. 2012. Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 19:884–892. http://dx.doi.org/10.1038/nsmb.2312.
  • Flaus A, Martin DM, Barton GJ, Owen-Hughes T. 2006. Identification of multiple distinct Snf2 subfamilies with conserved structural motifs. Nucleic Acids Res 34:2887–2905. http://dx.doi.org/10.1093/nar/gkl295.
  • Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annu Rev Biochem 78:273–304. http://dx.doi.org/10.1146/annurev.biochem.77.062706.153223.
  • Corona DF, Langst G, Clapier CR, Bonte EJ, Ferrari S, Tamkun JW, Becker PB. 1999. ISWI is an ATP-dependent nucleosome remodeling factor. Mol Cell 3:239–245. http://dx.doi.org/10.1016/S1097-2765(00)80314-7.
  • Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT. 1997. ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90:145–155. http://dx.doi.org/10.1016/S0092-8674(00)80321-9.
  • Lusser A, Urwin DL, Kadonaga JT. 2005. Distinct activities of CHD1 and ACF in ATP-dependent chromatin assembly. Nat Struct Mol Biol 12:160–166. http://dx.doi.org/10.1038/nsmb884.
  • Varga-Weisz PD, Wilm M, Bonte E, Dumas K, Mann M, Becker PB. 1997. Chromatin-remodelling factor CHRAC contains the ATPases ISWI and topoisomerase II. Nature 388:598–602. http://dx.doi.org/10.1038/41587.
  • Mueller-Planitz F, Klinker H, Becker PB. 2013. Nucleosome sliding mechanisms: new twists in a looped history. Nat Struct Mol Biol 20:1026–1032. http://dx.doi.org/10.1038/nsmb.2648.
  • Narlikar GJ, Sundaramoorthy R, Owen-Hughes T. 2013. Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154:490–503. http://dx.doi.org/10.1016/j.cell.2013.07.011.
  • Yang JG, Madrid TS, Sevastopoulos E, Narlikar GJ. 2006. The chromatin-remodeling enzyme ACF is an ATP-dependent DNA length sensor that regulates nucleosome spacing. Nat Struct Mol Biol 13:1078–1083. http://dx.doi.org/10.1038/nsmb1170.
  • Mobius W, Gerland U. 2010. Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites. PLoS Comput Biol 6(8):e1000891. http://dx.doi.org/10.1371/journal.pcbi.1000891.
  • Kornberg RD, Stryer L. 1988. Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res 16:6677–6690. http://dx.doi.org/10.1093/nar/16.14.6677.
  • Zhang Z, Wippo CJ, Wal M, Ward E, Korber P, Pugh BF. 2011. A packing mechanism for nucleosome organization reconstituted across a eukaryotic genome. Science 332:977–980. http://dx.doi.org/10.1126/science.1200508.
  • Celona B, Weiner A, Di Felice F, Mancuso FM, Cesarini E, Rossi RL, Gregory L, Baban D, Rossetti G, Grianti P, Pagani M, Bonaldi T, Ragoussis J, Friedman N, Camilloni G, Bianchi ME, Agresti A. 2011. Substantial histone reduction modulates genomewide nucleosomal occupancy and global transcriptional output. PLoS Biol 9:e1001086. http://dx.doi.org/10.1371/journal.pbio.1001086.
  • Gossett AJ, Lieb JD. 2012. In vivo effects of histone H3 depletion on nucleosome occupancy and position in Saccharomyces cerevisiae. PLoS Genet 8:e1002771. http://dx.doi.org/10.1371/journal.pgen.1002771.
  • Hu Z, Chen K, Xia Z, Chavez M, Pal S, Seol JH, Chen CC, Li W, Tyler JK. 2014. Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev 28:396–408. http://dx.doi.org/10.1101/gad.233221.113.
  • van Bakel H, Tsui K, Gebbia M, Mnaimneh S, Hughes TR, Nislow C. 2013. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription. PLoS Genet 9:e1003479. http://dx.doi.org/10.1371/journal.pgen.1003479.
  • Yamada K, Frouws TD, Angst B, Fitzgerald DJ, DeLuca C, Schimmele K, Sargent DF, Richmond TJ. 2011. Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472:448–453. http://dx.doi.org/10.1038/nature09947.
  • Wippo CJ, Israel L, Watanabe S, Hochheimer A, Peterson CL, Korber P. 2011. The RSC chromatin remodelling enzyme has a unique role in directing the accurate positioning of nucleosomes. EMBO J 30:1277–1288. http://dx.doi.org/10.1038/emboj.2011.43.
  • Simon RH, Felsenfeld G. 1979. A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res 6:689–696. http://dx.doi.org/10.1093/nar/6.2.689.
  • Krietenstein N, Wippo CJ, Lieleg C, Korber P. 2012. Genome-wide in vitro reconstitution of yeast chromatin with in vivo-like nucleosome positioning. Methods Enzymol 513:205–232. http://dx.doi.org/10.1016/B978-0-12-391938-0.00009-4.
  • Lowary PT, Widom J. 1998. New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. J Mol Biol 276:19–42. http://dx.doi.org/10.1006/jmbi.1997.1494.
  • Mueller-Planitz F, Klinker H, Ludwigsen J, Becker PB. 2013. The ATPase domain of ISWI is an autonomous nucleosome remodeling machine. Nat Struct Mol Biol 20:82–89.
  • Patel A, McKnight JN, Genzor P, Bowman GD. 2011. Identification of residues in chromodomain helicase DNA-binding protein 1 (Chd1) required for coupling ATP hydrolysis to nucleosome sliding. J Biol Chem 286:43984–43993. http://dx.doi.org/10.1074/jbc.M111.282970.
  • Ludwigsen J, Klinker H, Mueller-Planitz F. 2013. No need for a power stroke in ISWI-mediated nucleosome sliding. EMBO Rep 14:1092–1097. http://dx.doi.org/10.1038/embor.2013.160.
  • Forne I, Ludwigsen J, Imhof A, Becker PB, Mueller-Planitz F. 2012. Probing the conformation of the ISWI ATPase domain with genetically encoded photoreactive crosslinkers and mass spectrometry. Mol Cell Proteomics 11(4):M111.012088. http://dx.doi.org/10.1074/mcp.M111.012088.
  • Klinker H, Mueller-Planitz F, Yang R, Forne I, Liu CF, Nordenskiold L, Becker PB. 2014. ISWI remodelling of physiological chromatin fibres acetylated at lysine 16 of histone H4. PLoS One 9:e88411. http://dx.doi.org/10.1371/journal.pone.0088411.
  • Germond JE, Hirt B, Oudet P, Gross-Bellark M, Chambon P. 1975. Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc Natl Acad Sci U S A 72:1843–1847. http://dx.doi.org/10.1073/pnas.72.5.1843.
  • Lusser A, Kadonaga JT. 2004. Strategies for the reconstitution of chromatin. Nat Methods 1:19–26. http://dx.doi.org/10.1038/nmeth709.
  • Noll M, Zimmer S, Engel A, Dubochet J. 1980. Self-assembly of single and closely spaced nucleosome core particles. Nucleic Acids Res 8:21–42. http://dx.doi.org/10.1093/nar/8.1.21.
  • Spadafora C, Oudet P, Chambon P. 1978. The same amount of DNA is organized in in vitro-assembled nucleosomes irrespective of the origin of the histones. Nucleic Acids Res 5:3479–3489. http://dx.doi.org/10.1093/nar/5.10.3479.
  • Widom J. 2001. Role of DNA sequence in nucleosome stability and dynamics. Q Rev Biophys 34:269–324. http://dx.doi.org/10.1017/S0033583501003699.
  • Zhang Y, Moqtaderi Z, Rattner BP, Euskirchen G, Snyder M, Kadonaga JT, Liu XS, Struhl K. 2009. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat Struct Mol Biol 16:847–852. http://dx.doi.org/10.1038/nsmb.1636.
  • Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, LeProust EM, Hughes TR, Lieb JD, Widom J, Segal E. 2009. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458:362–366. http://dx.doi.org/10.1038/nature07667.
  • Oudet P, Gross-Bellard M, Chambon P. 1975. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 4:281–300. http://dx.doi.org/10.1016/0092-8674(75)90149-X.
  • Patterton HG, von Holt C. 1993. Negative supercoiling and nucleosome cores. II. The effect of negative supercoiling on the positioning of nucleosome cores in vitro. J Mol Biol 229:637–655.
  • Spadafora C, Oudet P, Chambon P. 1979. Rearrangement of chromatin structure induced by increasing ionic strength and temperature. Eur J Biochem 100:225–235. http://dx.doi.org/10.1111/j.1432-1033.1979.tb02053.x.
  • Steinmetz M, Streeck RE, Zachau HG. 1978. Closely spaced nucleosome cores in reconstituted histone. DNA complexes and histone-H1-depleted chromatin. Eur J Biochem 83:615–628.
  • Torigoe SE, Patel A, Khuong MT, Bowman GD, Kadonaga JT. 2013. ATP-dependent chromatin assembly is functionally distinct from chromatin remodeling. eLife 2:e00863. http://dx.doi.org/10.7554/eLife.00863.
  • Clapier CR, Langst G, Corona DF, Becker PB, Nightingale KP. 2001. Critical role for the histone H4 N terminus in nucleosome remodeling by ISWI. Mol Cell Biol 21:875–883. http://dx.doi.org/10.1128/MCB.21.3.875-883.2001.
  • Langst G, Bonte EJ, Corona DF, Becker PB. 1999. Nucleosome movement by CHRAC and ISWI without disruption or trans-displacement of the histone octamer. Cell 97:843–852. http://dx.doi.org/10.1016/S0092-8674(00)80797-7.
  • Korolev N, Vorontsova OV, Nordenskiold L. 2007. Physicochemical analysis of electrostatic foundation for DNA-protein interactions in chromatin transformations. Prog Biophys Mol Biol 95:23–49. http://dx.doi.org/10.1016/j.pbiomolbio.2006.11.003.
  • Dang W, Bartholomew B. 2007. Domain architecture of the catalytic subunit in the ISW2-nucleosome complex. Mol Cell Biol 27:8306–8317. http://dx.doi.org/10.1128/MCB.01351-07.
  • Kagalwala MN, Glaus BJ, Dang W, Zofall M, Bartholomew B. 2004. Topography of the ISW2-nucleosome complex: insights into nucleosome spacing and chromatin remodeling. EMBO J 23:2092–2104. http://dx.doi.org/10.1038/sj.emboj.7600220.
  • McKnight JN, Jenkins KR, Nodelman IM, Escobar T, Bowman GD. 2011. Extranucleosomal DNA binding directs nucleosome sliding by Chd1. Mol Cell Biol 31:4746–4759. http://dx.doi.org/10.1128/MCB.05735-11.
  • Racki LR, Yang JG, Naber N, Partensky PD, Acevedo A, Purcell TJ, Cooke R, Cheng Y, Narlikar GJ. 2009. The chromatin remodeller ACF acts as a dimeric motor to space nucleosomes. Nature 462:1016–1021. http://dx.doi.org/10.1038/nature08621.
  • Ryan DP, Sundaramoorthy R, Martin D, Singh V, Owen-Hughes T. 2011. The DNA-binding domain of the Chd1 chromatin-remodelling enzyme contains SANT and SLIDE domains. EMBO J 30:2596–2609. http://dx.doi.org/10.1038/emboj.2011.166.
  • Pepenella S, Murphy KJ, Hayes JJ. 2014. Intra- and inter-nucleosome interactions of the core histone tail domains in higher-order chromatin structure. Chromosoma 123:3–13. http://dx.doi.org/10.1007/s00412-013-0435-8.
  • Song F, Chen P, Sun D, Wang M, Dong L, Liang D, Xu RM, Zhu P, Li G. 2014. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science 344:376–380. http://dx.doi.org/10.1126/science.1251413.
  • Becker PB, Wu C. 1992. Cell-free system for assembly of transcriptionally repressed chromatin from Drosophila embryos. Mol Cell Biol 12:2241–2249.
  • Fyodorov DV, Blower MD, Karpen GH, Kadonaga JT. 2004. Acf1 confers unique activities to ACF/CHRAC and promotes the formation rather than disruption of chromatin in vivo. Genes Dev 18:170–183. http://dx.doi.org/10.1101/gad.1139604.
  • Blank TA, Becker PB. 1995. Electrostatic mechanism of nucleosome spacing. J Mol Biol 252:305–313. http://dx.doi.org/10.1006/jmbi.1995.0498.
  • Perez-Montero S, Carbonell A, Moran T, Vaquero A, Azorin F. 2013. The embryonic linker histone H1 variant of Drosophila, dBigH1, regulates zygotic genome activation. Dev Cell 26:578–590. http://dx.doi.org/10.1016/j.devcel.2013.08.011.
  • Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N. 2010. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20:90–100. http://dx.doi.org/10.1101/gr.098509.109.
  • Batta K, Zhang Z, Yen K, Goffman DB, Pugh BF. 2011. Genome-wide function of H2B ubiquitylation in promoter and genic regions. Genes Dev 25:2254–2265. http://dx.doi.org/10.1101/gad.177238.111.
  • Hughes AL, Jin Y, Rando OJ, Struhl K. 2012. A functional evolutionary approach to identify determinants of nucleosome positioning: a unifying model for establishing the genome-wide pattern. Mol Cell 48:5–15. http://dx.doi.org/10.1016/j.molcel.2012.07.003.
  • McManus J, Perry P, Sumner AT, Wright DM, Thomson EJ, Allshire RC, Hastie ND, Bickmore WA. 1994. Unusual chromosome structure of fission yeast DNA in mouse cells. J Cell Sci 107:469–486.
  • Mobius W, Osberg B, Tsankov AM, Rando OJ, Gerland U. 2013. Toward a unified physical model of nucleosome patterns flanking transcription start sites. Proc Natl Acad Sci U S A 110:5719–5724. http://dx.doi.org/10.1073/pnas.1214048110.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.