33
Views
94
CrossRef citations to date
0
Altmetric
Article

UV-B Radiation Induces Epithelial Tumors in Mice Lacking DNA Polymerase η and Mesenchymal Tumors in Mice Deficient for DNA Polymerase ι

, , , , , , , , , , & show all
Pages 7696-7706 | Received 15 Jun 2006, Accepted 25 Jul 2006, Published online: 27 Mar 2023

REFERENCES

  • Arlett, C. F., S. A. Harcourt, and B. C. Broughton. 1975. The influence of caffeine on cell survival in excision-proficient and excision-deficient xeroderma pigmentosum and normal human cell strains following ultraviolet-light irradiation. Mutat. Res. 33:341–346.
  • Barak, Y., O. Cohen-Fix, and Z. Livneh. 1995. Deamination of cytosine-containing pyrimidine photodimers in UV-irradiated DNA. J. Biol. Chem. 270:24174–24179.
  • Batty, D., V. Rapic'-Otrin, A. S. Levine, and R. D. Wood. 2000. Stable binding of human XPC complex to irradiated DNA confers strong discrimination for damaged sites. J. Mol. Biol. 300:275–290.
  • Boudsocq, F., R. J. Kokoska, B. S. Plosky, A. Vaisman, H. Ling, T. A. Kunkel, W. Yang, and R. Woodgate. 2004. Investigating the role of the little finger domain of Y-family DNA polymerases in low fidelity synthesis and translesion replication. J. Biol. Chem. 279:32932–32940.
  • Broughton, B. C., A. Cordonnier, W. J. Kleijer, N. G. J. Jaspers, H. Fawcett, A. Raams, V. C. Garritsen, A. Stary, M.-F. Avril, F. Boudsocq, C. Masutani, F. Hanaoka, R. P. Fuchs, A. Sarasin, and A. R. Lehmann. 2002. Molecular analysis of mutations in DNA polymerase η in xeroderma pigmentosum-variant patients. Proc. Natl. Acad. Sci. USA 99:815–820.
  • Bruner, R., K. Küttler, R. Bader, W. Kaufmann, A. Boothe, M. Enomoto, J. M. Holland, and W. E. Parish. 2001. Integumentary system, p. 1–22. In U. Mohr (ed.), International classification of rodent tumors: the mouse. WHO/International Agency for Research on Cancer. Springer-Verlag, Heidelberg, Germany.
  • Burger, A., D. Fix, H. Liu, J. Hays, and R. Bockrath. 2003. In vivo deamination of cytosine-containing cyclobutane pyrimidine dimers in E. coli: a feasible part of UV-mutagenesis. Mutat. Res. 522:145–156.
  • Cheo, D. L., L. B. Meira, R. E. Hammer, D. K. Burns, A. T. B. Doughty, and E. C. Friedberg. 1996. Synergistic interactions between XPC and p53 mutations in double-mutant mice: neural tube abnormalities and accelerated UV radiation-induced skin cancer. Curr. Biol. 6:1691–1694.
  • Choi, J.-H., A. Besaratinia, D.-H. Lee, C.-S. Lee, and G. P. Pfeifer. 2006. The role of DNA polymerase ι in UV mutational spectra. Mutat. Res. 599:58–65.
  • Cleaver, J. E. 2005. Cancer in xeroderma pigmentosum and related disorders of DNA repair. Nat. Rev. Cancer 5:564–573.
  • Courdavault, S., C. Baudouin, M. Carveron, B. Canguilhem, A. Favier, J. Cadet, and T. Douki. 2005. Repair of the three main types of bipyrimidine DNA photoproducts in human keratinocytes exposed to UVB and UVA radiations. DNA Repair 4:836–844.
  • Courdavault, S., C. Baudouin, S. Sauvagio, S. Mouret, S. Candéias, M. Carveron, A. Favier, J. Cadet, and T. Douki. 2004. Unrepaired cyclobutane pyrimidine dimers do not prevent proliferation of UV-B-irradiated cultured human fibroblasts. Photochem. Photobiol. 79:145–151.
  • Delbos, F., A. De Smet., A. Faili, S. Aoufouchi, J. C. Weill, and C. A. Reynaud. 2005. Contribution of DNA polymerase η to immunoglobulin gene hypermutation in the mouse. J. Exp. Med. 201:1191–1196.
  • D'Errico, M., M. Teson, A. Calcagnile, L. Proietti De Santis, O. Nikaido, E. Botta, G. Zambruno, M. Stefanini, and E. Dogliotti. 2003. Apoptosis and efficient repair of DNA damage protect human keratinocytes against UVB. Cell Death Differ. 10:754–756.
  • de Vries, A., C. Th. M. van Oostrom, F. M. A. Hofhuis, P. M. Dortant, R. J. W. Berg, F. R. de Gruijl, P. W. Wester, C. F. van Kreijl, P. J. A. Capel, H. van Steeg, and S. J. Verbeek. 1995. Increased susceptibility to ultraviolet-B and carcinogens of mice lacking the DNA excision repair gene XPA. Nature 377:169–173.
  • Diaz, M., and C. Lawrence. 2005. An update on the role of translesion synthesis DNA polymerases in Ig hypermutation. Trends Immunol. 26:215–220.
  • Friedberg, E. C., A. R. Lehmann, and R. P. P. Fuchs. 2005. Trading places: how do DNA polymerases switch during translesion DNA synthesis? Mol. Cell 18:499–505.
  • Friedberg, E. C., and L. B. Meira. 2006. Database of mouse strains carrying targeted mutations in genes affecting biological responses to DNA damage, version 7. DNA Repair 5:189–209.
  • Gibbs, P. E. M., W. G. McGregor, V. M. Maher, P. Nisson, and C. W. Lawrence. 1998. A human homolog of the Saccharomyces cerevisiae REV3 gene, which encodes the catalytic subunit of DNA polymerase ζ. Proc. Natl. Acad. Sci. USA 95:6876–6880.
  • Gibbs, P. E. M., X.-D. Wang, Z. Li, T. P. McManus, W. G. McGregor, C. W. Lawrence, and V. M. Maher. 2000. The function of the human homolog of Saccharomyces cerevisiae REV1 is required for mutagenesis induced by UV light. Proc. Natl. Acad. Sci. USA 97:4186–4191.
  • Hanawalt, P. C., P. K. Cooper, A. K. Ganesan, and C. A. Smith. 1979. DNA repair in bacteria and mammalian cells. Annu. Rev. Biochem. 48:783–836.
  • Higashi, Y., M. Maruhashi, L. Nelles, T. van de Putte, K. Vershueren, T. Miyoshi, A. Yoshimoto, H. Kondoh, and D. Huylebroeck. 2002. Generation of the floxed allele of the SIP1 (Smad-interacting protein 1) gene for Cre-mediated conditional knockout in the mouse. Genetics 32:82–84.
  • Itoh, T., S. Linn, R. Kamide, H. Tokushige, N. Katori, Y. Hosaka, and M. Yamaizumi. 2000. Xeroderma pigmentosum variant heterozygotes show reduced levels of recovery of replicative DNA synthesis in the presence of caffeine after ultraviolet irradiation. J. Investig. Dermatol. 115:981–985.
  • Jans, J., W. Schul, Y.-G. Sert, Y. Rijksen, H. Rebel, A. P. M. Eker, S. Nakajima, H. van Steeg, F. R. de Gruijl, A. Yasui, J. H. Hoeijmakers, and G. T. van der Horst. 2005. Powerful skin cancer protection by a CPD-photolyase transgenic. Curr. Biol. 15:105–115.
  • Jansen, J. G., P. Langerak, A. Tsaalbi-Shtylik, P. van den Berk, H. Jacobs, and N. de Wind. 2006. Strand-biased defect in C/G transversions in hypermutating immunoglobulin genes in Rev1-deficient mice. J. Exp. Med. 203:319–323.
  • Jansen, J. G., A. Tsaalbi-Shtylik, P. Langerak, F. Calléja, C. M. Meijers, H. Jacobes, and N. de Wind. 2005. The BRCT domain of mammalian Rev1 is involved in regulating DNA translesion synthesis. Nucleic Acids Res. 33:356–365.
  • Johnson, R. E., M. T. Washington, L. Haracska, S. Prakash, and L. Prakash. 2001. Eukaryotic polymerase ι and ζ act sequentially to bypass DNA lesions. Nature 406:1015–1019.
  • Johnson, R. E., M. T. Washington, S. Prakash, and L. Prakash. 2000. Fidelity of human DNA polymerase η. J. Biol. Chem. 275:7447–7450.
  • Kaufmann, W. K., T. P. Heffernan, L. M. Beaulieu, S. Doherty, A. R. Frank, Y. Zhou, M. F. Bryant, T. Zhou, D. D. Luche, N. Nikolaishvili-Feinberg, D. A. Simpson, and M. Cordeiro-Stone. 2003. Caffeine and human DNA metabolism: the magic and the mystery. Mutat. Res. 532:85–102.
  • Kusumoto, R., C. Masutani, K. Sugasawa, S. Iwai, M. Araki, A. Uchida, T. Mizukoshi, and F. Hanaoka. 2001. Diversity of the damage recognition step in the global genomic nucleotide excision repair in vitro. Mutat. Res. 485:219–227.
  • Lee, G.-H., and H. Matsushita. 2005. Genetic linkage between Pol ι deficiency and increased susceptibility to lung tumors in mice. Cancer Sci. 96:256–259.
  • Lee, G.-H., H. Nishimori, Y. Sasaki, H. Matsushita, T. Kitagawa, and T. Tokino. 2003. Analysis of lung tumorigenesis in chimeric mice indicates the Pulmonary adenoma resistance 2 (Par2) locus to operate in the tumor-initiation stage in a cell-autonomous manner: detection of polymorphisms in the Polι gene as a candidate for Par2. Oncogene 22:2374–2382.
  • Lee, H.-D., and G. P. Pfeifer. 2003. Deamination of 5-methylcytosines within cyclobutane pyrimidine dimers is an important component of UVB mutagenesis. J. Biol. Chem. 278:10314–10321.
  • Lehmann, A. R., S. Kirk-Bell, C. F. Arlett, M. C. Paterson, P. H. M. Lohman, E. A. de Weerd-Kastlelein, and D. Bootsma. 1975. Xeroderma pigmentosum cells with normal levels of excision repair have a defect in DNA synthesis after UV-irradiation. Proc. Natl. Acad. Sci. USA 72:219–223.
  • Li, Z., H. Zhang, T. P. McManus, J. J. McCormick, C. W. Lawrence, and V. M. Maher. 2002. hREV3 is essential for error-prone translesion synthesis past UV or benzo[a]pyrene diol epoxide-induced DNA lesions in human fibroblasts. Mutat. Res. 510:71–80.
  • Lin, Q., A. B. Clark, S. D. McCulloch, T. Yuan, R. T. Bronson, T. A. Kunkel, and R. Kucherlapati. 2006. Increased susceptibility to UV-induced skin carcinogenesis in polymerase η-deficient mice. Cancer Res. 66:87–94.
  • Ling, H., F. Boudsocq, R. Woodgate, and W. Yang. 2001. Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107:91–102.
  • Martomo, S. A., W. Y. William, R. P. Wersto, T. Ohkumo, Y. Kondo, M. Yokoi, C. Masutani, F. Hanaoka, and P. J. Gearhart. 2005. Different mutation signatures in DNA polymerase η- and MSH6-deficient mice suggest separate roles in antibody diversification. Proc. Natl. Acad. Sci. USA 102:8656–8661.
  • Martomo, S. A., W. W. Yang, A. Vaisman, A. Maas, M. Yokoi, J. H. Hoeijmakers, F. Hanaoka, R. Woodgate, and P. J. Gearhart. 2006. Normal hypermutation in antibody genes from congenic mice defective for DNA polymerase ι. DNA Repair 5:392–398.
  • Masuda, K., R. Ouchida, A. Takeuchi, T. Saito, H. Koseki, K. Kawamura, M. Tagawa, T. Tokuhisa, T. Azuma, and J. O. Wang. 2005. DNA polymerase θ contributes to the generation of C/G mutations during somatic hypermutation of Ig genes. Proc. Natl. Acad. Sci. USA 102:13986–13991.
  • Masutani, C., M. Araki, A. Yamada, R. Kusumoto, T. Nogimori, T. Maekawa, S. Iwai, and F. Hanaoka. 1999. Xeroderma pigmentosum variant (XP-V) correcting protein from HeLa cells has a thymine dimer bypass DNA polymerase activity. EMBO J. 18:3491–3501.
  • Masutani, C., R. Kusumoto, S. Iwai, and F. Hanaoka. 2000. Mechanisms of accurate translesion synthesis by human DNA polymerase η. EMBO J. 19:3100–3109.
  • Masutani, C., R. Kusumoto, A. Yamada, N. Dohmae, M. Yokoi, M. Yuasa, M. Araki, S. Iwai, K. Takio, and F. Hanaoka. 1999. The XPV (xeroderma pigmentosum variant) gene encodes human DNA polymerase η. Nature 399:700–704.
  • Matsumoto, T., J. Jiang, K. Kiguchi, L. Ruffino, S. Carbajal, L. Beltrán, D. K. Bol, M. P. Rosenberg, and J. DiGiovanni. 2003. Targeted expression of c-Src in epidermal basal cells leads to enhanced skin tumor promotion, malignant progression, and metastasis. Cancer Res. 63:4819–4828.
  • McDonald, J. P., E. G. Frank, B. S. Plosky, I. B. Rogozin, C. Masutani, F. Hanaoka, R. Woodgate, and P. J. Gearhart. 2003. 129-derived strains of mice are deficient in DNA polymerase ι and have normal immunoglobulin hypermutation. J. Exp. Med. 198:635–643.
  • Mitchell, D. L., J. E. Cleaver, and J. H. Epstein. 1990. Repair of pyrimidine(6-4)pyrimidone photoproducts in mouse skin. J. Investig. Dermatol. 95:55–59.
  • Nagy, A., J. Rossant, R. Nagy, W. Abramow-Newerly, and J. C. Roder. 1993. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA 90:8424–8428.
  • Nakane, H., S. Takeuchi, S. Yuba, M. Saijo, Y. Nakatsu, H. Murai, Y. Nakatsuru, T. Ishikawa, S. Hirota, Y. Kitamura, Y. Kato, Y. Tsunoda, H. Miyauchi, T. Horio, T. Tokunaga, T. Matsunaga, O. Nikaido, Y. Nishimune, Y. Okada, and K. Tanaka. 1995. High incidence of ultraviolet-B- or chemical-carcinogen-induced skin tumors in mice lacking the xeroderma pigmentosum group A gene. Nature 377:165–168.
  • Peckham, J. C., and K. Heider. 1999. Skin and subcutis, p. 555–612. In R. R. Maronpot (ed.), Pathology of the mouse: reference and atlas. Cache River Press, Vienna, Austria.
  • Peng, W., and B. R. Shaw. 1996. Accelerated deamination of cytosine residues in UV-induced cyclobutane pyrimidine dimers leads to CC→TT transitions. Biochemistry 35:10172–10181.
  • Qin, X., S. Zhang, H. Oda, Y. Nakatsuru, S. Shimizu, Y. Yamazaki, O. Nikaido, and T. Ishikawa. 1995. Quantitative detection of ultraviolet light-induced photoproducts in mouse skin by immunohistochemistry. Jpn. J. Cancer Res. 86:1041–1048.
  • Ruven, H. J., C. M. Seelen, P. H. Lohman, H. van Kranen, A. A. van Zeeland, and L. H. Mullenders. 1994. Strand-specific removal of cyclobutane pyrimidine dimers from the p53 gene in the epidermis of UVB-irradiated hairless mice. Oncogene 9:3427–3432.
  • Sands, A. T., A. Abuin, A. Sanchez, C. J. Conti, and A. Bradley. 1995. High susceptibility to ultraviolet-induced carcinogenesis in mice lacking XPC. Nature 377:162–165.
  • Seki, M., P. J. Gearhart, and R. D. Wood. 2005. DNA polymerases and somatic hypermutation of immunoglobulin genes. EMBO Rep. 6:1143–1148.
  • Shimizu, T., T. Azuma, M. Ishiguro, N. Kanjo, A. Yamada, and H. Ohmori. 2005. Normal immunoglobulin gene somatic hypermutation in Polκ-Polι double-deficient mice. Immunology Lett. 98:259–264.
  • Silvian, L. F., E. A. Toth, P. Pham, M. F. Goodman, and T. Ellenberger. 2001. Crystal structure of a DinB family error-prone DNA polymerase from Sulfolobus solfataricus. Nat. Struct. Biol. 8:984–989.
  • Sugasawa, K., T. Okamoto, Y. Shimizu, C. Masutani, S. Iwai, and F. Hanaoka. 2001. A multiple damage recognition mechanism for global genomic nucleotide excision repair. Genes Dev. 15:507–521.
  • Takasawa, K., C. Masutani, F. Hanaoka, and S. Iwai. 2004. Chemical synthesis and translesion replication of a cis-syn cyclobutane thymine-uracil dimer. Nucleic Acids Res. 32:1738–1745.
  • Tessman, I., A. M. Kennedy, and S. K. Liu. 1994. Unusual kinetics of uracil formation in single and double-stranded DNA by deamination of cytosine in cyclobutane pyrimidine dimers. J. Mol. Biol. 235:807–812.
  • Tissier, A., E. G. Frank, J. P. McDonald, S. Iwai, F. Hanaoka, and R. Woodgate. 2000. Misinsertion and bypass of thymine-thymine dimers by human DNA polymerase ι. EMBO J. 19:5259–5266.
  • Trincao, J., R. E. Johnson, C. R. Escalante, S. Prakash, L. Prakash, and A. K. Aggarwal. 2001. Structure of the catalytic core of S. cerevisiae DNA polymerase η: implications for translesion DNA synthesis. Mol. Cell 8:417–426.
  • Tu, Y., R. Dammann, and G. P. Pfeifer. 1998. Sequence and time-dependent deamination of cytosine bases in UVB-induced cyclobutane pyrimidine dimers in vivo. J. Mol. Biol. 284:297–311.
  • Vaisman, A., E. G. Frank, S. Iwai, E. Ohashi, H. Ohmori, F. Hanaoka, and R. Woodgate. 2003. Sequence context-dependent replication of DNA templates containing UV-induced lesions by human DNA polymerase ι. DNA Repair 2:991–1006.
  • Vaisman, A., E. K. Frank, J. P. McDonald, A. Tissier, and R. Woodgate. 2002. Polι-dependent lesion bypass in vitro. Mutat. Res. 510:9–22.
  • Vaisman, A., K. Takasawa, S. Iwai, and R. Woodgate. 2006. DNA polymerase ι-dependent translesion replication of uracil containing cyclobutane pyrimidine dimers. DNA Repair 5:210–218.
  • Vaisman, A., and R. Woodgate. 2001. Unique misinsertion specificity of polι may decrease the mutagenic potential of deaminated cytosines. EMBO J. 20:6520–6529.
  • van der Horst, G. T. J., L. Meira, T. G. M. F. Gorgels, J. de Wit, S. Velasco-Miguel, J. A. Richardson, Y. Kamp, M. P. G. Vreeswijk, B. Smit, D. Bootsma, J. H. J. Hoeijmakers, and E. C. Friedberg. 2002. UVB radiation-induced cancer predisposiotion in Cockayne syndrome group A (Csa) mutant mice. DNA Repair 1:143–157.
  • Wang, M., T. R. Devereux, H. G. Vikis, S. D. McCulloch, W. Holliday, C. Anna, Y. Wang, K. Bebenek, T. A. Kunkel, K. Guan, and M. You. 2004. Pol ι is a candidate for the mouse pulmonary adenoma resistance 2 locus, a major modifier of chemically induced lung neoplasia. Cancer Res. 64:1924–1931.
  • Ward, J. M., M. R. Anver, J. F. Mahler, and D. E. Devor-Henneman. 2000. Pathology of mice commonly used in genetic engineering (C57BL/6; 129; B6, 129; and FVB/N), p. 161–179. In J. M. Ward, J. F. Mahler, R. R. Maronpot, and J. P. Sundberg (ed.), Pathology of genetically engineered mice. Iowa State University Press, Ames.
  • Yamada, A., C. Masutani, S. Iwai, and F. Hanaoka. 2000. Complementation of defective translesion synthesis and UV light sensitivity in xeroderma pigmentosum variant cells by human and mouse DNA polymerase η. Nucleic Acids Res. 28:2473–2480.
  • Yamazaki, F., H. Okamoto, Y. Matsumura, K. Tanaka, K. Kunisada, and T. Horio. 2005. Development of a new mouse model (xeroderma pigmentosum A-deficient, stem cell factor-transgenic) of ultraviolet B-induced melanoma. J. Investig. Dermatol. 125:521–525.
  • Yanagawa, Y., T. Kobayashi., M. Ohnishi, T. Kobayashi, S. Tamura, T. Tsuzuki, M. Sanbo, T. Yagi, F. Tashiro, and J. Miyazaki. 1999. Enrichment and efficient screening of ES cells containing a targeted mutation: the use of DT-A gene with the polyadenylation signal as a negative selection marker. Transgenic Res. 8:215–221.
  • You, Y.-H., D.-H. Lee, J.-H. Yoon, S. Nakajima, A. Yasui, and G. P. Pfeifer. 2001. Cyclobutane pyrimidine dimers are responsible for the vast majority of mutations induced by UVB irradiation in mammalian cells. J. Biol. Chem. 276:44688–44694.
  • Yuasa, M., C. Masutani, T. Eki, and F. Hanaoka. 2000. Genomic structure, chromosomal localization and identification of mutations in the xeroderma pigmentosum variant (XPV) gene. Oncogene 19:4721–4728.
  • Zan, H., N. Shima, Z. Xu, A. Al-Qahtani, A. J. Evinger III, Y. Zhong, J. C. Schumenti, and P. Casali. 2005. The translesion DNA polymerase θ plays a dominant role in immunoglobulin gene somatic hypermutation. EMBO J. 24:3757–3769.
  • Zhang, Y., F. Yuan, X. Wu, J.-S. Taylor, and Z. Wang. 2001. Response of human DNA polymerase ι to DNA lesions. Nucleic Acids Res. 29:928–935.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.