43
Views
75
CrossRef citations to date
0
Altmetric
Article

Sequestration of Toxic Oligomers by HspB1 as a Cytoprotective Mechanism

, , , &
Pages 3146-3157 | Received 08 Oct 2010, Accepted 13 Nov 2010, Published online: 20 Mar 2023

REFERENCES

  • Allaman, I., et al. 2010. Amyloid-beta aggregates cause alterations of astrocytic metabolic phenotype: impact on neuronal viability. J. Neurosci. 30:3326–3338.
  • Armstrong, C. L., A. M. Krueger-Naug, R. W. Currie, and R. Hawkes. 2001. Constitutive expression of heat shock protein HSP25 in the central nervous system of the developing and adult mouse. J. Comp. Neurol. 434:262–274.
  • Arrigo, A. P. 2007. The cellular “networking” of mammalian Hsp27 and its functions in the control of protein folding, redox state and apoptosis. Adv. Exp. Med. Biol. 594:14–26.
  • Arrigo, A. P., and J. Landry. 1994. Expression and function of the low-molecular-weight heat shock proteins, p. 335.In Morimoto, R. I. (ed.), The biology of heat shock proteins and molecular chaperones. Cold Spring Harbor Laboratory Press, Plainview, NY.
  • Butterfield, D. A., and D. Boyd-Kimball. 2004. Amyloid beta-peptide(1–42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathol. (Zurich, Switzerland) 14:426–432.
  • Carrio, M., N. Gonzalez-Montalban, A. Vera, A. Villaverde, and S. Ventura. 2005. Amyloid-like properties of bacterial inclusion bodies. J. Mol. Biol. 347:1025–1037.
  • Cashikar, A. G., M. L. Duennwald, and S. L. Lindquist. 2005. A chaperone pathway in protein disaggregation: Hsp26 alters the nature of protein aggregates to facilitate reactivation by Hsp104. J. Biol. Chem. 280:23869–23875.
  • Caughey, B., and P. T. Lansbury. 2003. Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26:267–298.
  • Clayton, A., A. Turkes, H. Navabi, M. D. Mason, and Z. Tabi. 2005. Induction of heat shock proteins in B-cell exosomes. J. Cell Sci. 118:3631–3638.
  • Cohen, E., and A. Dillin. 2008. The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat. Rev. Neurosci. 9:759–767.
  • Cohen, E., et al. 2009. Reduced IGF-1 signaling delays age-associated proteotoxicity in mice. Cell 139:1157–1169.
  • Dabir, D. V., J. Q. Trojanowski, C. Richter-Landsberg, V. M. Lee, and M. S. Forman. 2004. Expression of the small heat-shock protein alphaB-crystallin in tauopathies with glial pathology. Am. J. Pathol. 164:155–166.
  • Dahlgren, K. N., et al. 2002. Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J. Biol. Chem. 277:32046–32053.
  • Demuro, A., et al. 2005. Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J. Biol. Chem. 280:17294–17300.
  • Douglas, P. M., et al. 2008. Chaperone-dependent amyloid assembly protects cells from prion toxicity. Proc. Natl. Acad. Sci. U. S. A. 105:7206–7211.
  • Durrenberger, P. F., et al. 2009. DnaJB6 is present in the core of Lewy bodies and is highly up-regulated in parkinsonian astrocytes. J. Neurosci. Res. 87:238–245.
  • Evgrafov, O. V., et al. 2004. Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat. Genet. 36:602–606.
  • Fonte, V., et al. 2008. Suppression of in vivo beta amyloid peptide toxicity by overexpression of the HSP-16.2 small chaperone protein. J. Biol. Chem. 283:784–791.
  • Franck, E., et al. 2004. Evolutionary diversity of vertebrate small heat shock proteins. J. Mol. Evol. 59:792–805.
  • Glabe, C. G. 2008. Structural classification of toxic amyloid oligomers. J. Biol. Chem. 283:29639–29643.
  • Gouras, G. K., et al. 2000. Intraneuronal Abeta42 accumulation in human brain. Am. J. Pathol. 156:15–20.
  • Haley, D. A., J. Horwitz, and P. L. Stewart. 1998. The small heat-shock protein, alphaB-crystallin, has a variable quaternary structure. J. Mol. Biol. 277:27–35.
  • Haslbeck, M. 2002. sHsps and their role in the chaperone network. Cell. Mol. Life Sci. 59:1649–1657.
  • Haslbeck, M., T. Franzmann, D. Weinfurtner, and J. Buchner. 2005. Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12:842–846.
  • Hawe, A., M. Sutter, and W. Jiskoot. 2008. Extrinsic fluorescent dyes as tools for protein characterization. Pharm. Res. 25:1487–1499.
  • Hayes, D., V. Napoli, A. Mazurkie, W. F. Stafford, and P. Graceffa. 2009. Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function. J. Biol. Chem. 284:18801–18807.
  • Horwitz, J. 1992. Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. U. S. A. 89:10449–10453.
  • Hsiao, K., et al. 1996. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274:99–102.
  • Hu, X., et al. 2009. Amyloid seeds formed by cellular uptake, concentration, and aggregation of the amyloid-beta peptide. Proc. Natl. Acad. Sci. U. S. A. 106:20324–20329.
  • Huang, L., J. N. Min, S. Masters, N. F. Mivechi, and D. Moskophidis. 2007. Insights into function and regulation of small heat shock protein 25 (HSPB1) in a mouse model with targeted gene disruption. Genesis 45:487–501.
  • Jankowsky, J. L., et al. 2004. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13:159–170.
  • Jankowsky, J. L., et al. 2001. Co-expression of multiple transgenes in mouse CNS: a comparison of strategies. Biomol. Eng. 17:157–165.
  • Kayed, R., et al. 2003. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489.
  • Kim, K. K., R. Kim, and S. H. Kim. 1998. Crystal structure of a small heat-shock protein. Nature 394:595–599.
  • King, M., F. Nafar, J. Clarke, and K. Mearow. 2009. The small heat shock protein Hsp27 protects cortical neurons against the toxic effects of beta-amyloid peptide. J. Neurosci. Res. 87:3161–3175.
  • Koffie, R. M., et al. 2009. Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl. Acad. Sci. U. S. A. 106:4012–4017.
  • Kudva, Y. C., H. J. Hiddinga, P. C. Butler, C. S. Mueske, and N. L. Eberhardt. 1997. Small heat shock proteins inhibit in vitro A beta(1–42) amyloidogenesis. FEBS Lett. 416:117–121.
  • Lee, S., K. Carson, A. Rice-Ficht, and T. Good. 2006. Small heat shock proteins differentially affect Abeta aggregation and toxicity. Biochem. Biophys. Res. Commun. 347:527–533.
  • Lesne, S., et al. 2006. A specific amyloid-beta protein assembly in the brain impairs memory. Nature 440:352–357.
  • LeVine, H.III. 1999. Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol. 309:274–284.
  • MacRae, T. H. 2000. Structure and function of small heat shock/alpha-crystallin proteins: established concepts and emerging ideas. Cell. Mol. Life Sci. 57:899–913.
  • Mandrekar, S., et al. 2009. Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis. J. Neurosci. 29:4252–4262.
  • Mogk, A., et al. 2003. Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. J. Biol. Chem. 278:31033–31042.
  • Murphy, M. P., and H. LeVine, III. 2010. Alzheimer's disease and the amyloid-beta peptide. J. Alzheimers Dis. 19:311–323.
  • Narberhaus, F. 2002. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 66:64–93.
  • Nielsen, H. M., et al. 2010. Astrocytic A beta 1–42 uptake is determined by A beta-aggregation state and the presence of amyloid-associated proteins. Glia 58:1235–1246.
  • Ojha, J., R. V. Karmegam, J. G. Masilamoni, A. V. Terry, and A. G. Cashikar. 2011. Behavioral defects in chaperone-deficient Alzheimer's disease model mice. PLoS One 6:e16550.
  • Raman, B., et al. 2005. AlphaB-crystallin, a small heat-shock protein, prevents the amyloid fibril growth of an amyloid beta-peptide and beta2-microglobulin. Biochem. J. 392:573–581.
  • Rayner, K., et al. 2008. Extracellular release of the atheroprotective heat shock protein 27 is mediated by estrogen and competitively inhibits acLDL binding to scavenger receptor-A. Circ. Res. 103:133–141.
  • Redmond, L., A. H. Kashani, and A. Ghosh. 2002. Calcium regulation of dendritic growth via CaM kinase IV and CREB-mediated transcription. Neuron 34:999–1010.
  • Renkawek, K., G. J. Stege, and G. J. Bosman. 1999. Dementia, gliosis and expression of the small heat shock proteins hsp27 and alpha B-crystallin in Parkinson's disease. Neuroreport 10:2273–2276.
  • Renkawek, K., C. E. Voorter, G. J. Bosman, F. P. van Workum, and W. W. de Jong. 1994. Expression of alpha B-crystallin in Alzheimer's disease. Acta Neuropathol. (Berl.) 87:155–160.
  • Richner, M., G. Bach, and M. J. West. 2009. Over expression of amyloid beta-protein reduces the number of neurons in the striatum of APPswe/PS1DeltaE9. Brain Res. 1266:87–92.
  • Rogalla, T., et al. 1999. Regulation of Hsp27 oligomerization, chaperone function, and protective activity against oxidative stress/tumor necrosis factor alpha by phosphorylation. J. Biol. Chem. 274:18947–18956.
  • Santhoshkumar, P., and K. K. Sharma. 2004. Inhibition of amyloid fibrillogenesis and toxicity by a peptide chaperone. Mol. Cell. Biochem. 267:147–155.
  • Shankar, G. M., et al. 2008. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat. Med. 14:837–842.
  • Shinohara, H., Y. Inaguma, S. Goto, T. Inagaki, and K. Kato. 1993. Alpha B crystallin and HSP28 are enhanced in the cerebral cortex of patients with Alzheimer's disease. J. Neurol. Sci. 119:203–208.
  • Sorger, P. K. 1991. Heat shock factor and the heat shock response. Cell 65:363–366.
  • Spires, T. L., and B. T. Hyman. 2005. Transgenic models of Alzheimer's disease: learning from animals. NeuroRx 2:423–437.
  • Stine, W. B.Jr., K. N. Dahlgren, G. A. Krafft, and M. J. LaDu. 2003. In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis. J. Biol. Chem. 278:11612–11622.
  • Taylor, R. P., and I. J. Benjamin. 2005. Small heat shock proteins: a new classification scheme in mammals. J. Mol. Cell. Cardiol. 38:433–444.
  • Tyedmers, J., A. Mogk, and B. Bukau. 2010. Cellular strategies for controlling protein aggregation. Nat. Rev. Mol. Cell Biol. 11:777–788.
  • Uryu, K., et al. 2006. Convergence of heat shock protein 90 with ubiquitin in filamentous alpha-synuclein inclusions of alpha-synucleinopathies. Am. J. Pathol. 168:947–961.
  • Ventura, S., and A. Villaverde. 2006. Protein quality in bacterial inclusion bodies. Trends Biotechnol. 24:179–185.
  • Voisine, C., J. S. Pedersen, and R. I. Morimoto. 2010. Chaperone networks: tipping the balance in protein folding diseases. Neurobiol. Dis. 40:12–20.
  • Wertkin, A. M., et al. 1993. Human neurons derived from a teratocarcinoma cell line express solely the 695-amino acid amyloid precursor protein and produce intracellular beta-amyloid or A4 peptides. Proc. Natl. Acad. Sci. U. S. A. 90:9513–9517.
  • Westerheide, S. D., J. Anckar, S. M. Stevens, Jr., L. Sistonen, and R. I. Morimoto. 2009. Stress-inducible regulation of heat shock factor 1 by the deacetylase SIRT1. Science 323:1063–1066.
  • Westermark, G. T., K. H. Johnson, and P. Westermark. 1999. Staining methods for identification of amyloid in tissue. Methods Enzymol. 309:3–25.
  • Wilhelmus, M. M., et al. 2007. Small heat shock proteins associated with cerebral amyloid angiopathy of hereditary cerebral hemorrhage with amyloidosis (Dutch type) induce interleukin-6 secretion. Neurobiol. Aging 30:229–240.
  • Wilhelmus, M. M., et al. 2006. Small heat shock proteins inhibit amyloid-beta protein aggregation and cerebrovascular amyloid-beta protein toxicity. Brain Re. 1089:67–78.
  • Wilhelmus, M. M., et al. 2006. Small heat shock protein HspB8: its distribution in Alzheimer's disease brains and its inhibition of amyloid-beta protein aggregation and cerebrovascular amyloid-beta toxicity. Acta Neuropathol. 111:139–149.
  • Wilhelmus, M. M., et al. 2006. Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer's disease brains. Neuropathol. Appl. Neurobiol. 32:119–130.
  • Wyttenbach, A., et al. 2002. Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum. Mol. Genet. 11:1137–1151.
  • Zhang, Y., R. McLaughlin, C. Goodyer, and A. LeBlanc. 2002. Selective cytotoxicity of intracellular amyloid beta peptide 1–42 through p53 and Bax in cultured primary human neurons. J. Cell Biol. 156:519–529.
  • Zourlidou, A., M. D. Payne Smith, and D. S. Latchman. 2004. HSP27 but not HSP70 has a potent protective effect against alpha-synuclein-induced cell death in mammalian neuronal cells. J. Neurochem. 88:1439–1448.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.