55
Views
35
CrossRef citations to date
0
Altmetric
Article

Immunosuppression by N-Methyl-d-Aspartate Receptor Antagonists Is Mediated through Inhibition of Kv1.3 and KCa3.1 Channels in T Cells

, , , , , , , , & show all
Pages 820-831 | Received 25 Sep 2013, Accepted 06 Dec 2013, Published online: 20 Mar 2023

REFERENCES

  • Gladding CM, Raymond LA. 2011. Mechanisms underlying NMDA receptor synaptic/extrasynaptic distribution and function. Mol. Cell. Neurosci. 48:308–320. http://dx.doi.org/10.1016/j.mcn.2011.05.001.
  • Collingridge GL, Olsen RW, Peters J, Spedding M. 2009. A nomenclature for ligand-gated ion channels. Neuropharmacology 56:2–5. http://dx.doi.org/10.1016/j.neuropharm.2008.06.063.
  • Salter MW, Dong Y, Kalia LV, Liu XJ, Pitcher G. 2009. Regulation of NMDA receptors by kinases and phosphatases, p 123–148. In Van Dongen AM (ed), Biology of the NMDA receptor. CRC Press, Boca Raton, FL.
  • Groc L, Heine M, Cousins SL, Stephenson FA, Lounis B, Cognet L, Choquet D. 2006. NMDA receptor surface mobility depends on NR2A-2B subunits. Proc. Natl. Acad. Sci. U. S. A. 103:18769–18774. http://dx.doi.org/10.1073/pnas.0605238103.
  • Paoletti P, Neyton J. 2007. NMDA receptor subunits: function and pharmacology. Curr. Opin. Pharmacol. 7:39–47. http://dx.doi.org/10.1016/j.coph.2006.08.011.
  • Olivares D, Deshpande VK, Shi Y, Lahiri DK, Greig NH, Rogers JT, Huang X. 2012. N-Methyl D-aspartate (NMDA) receptor antagonists and memantine treatment for Alzheimer's disease, vascular dementia and Parkinson's disease. Curr. Alzheimer Res. 9:746–758. http://dx.doi.org/10.2174/156720512801322564.
  • Peery HE, Day GS, Dunn S, Fritzler MJ, Pruss H, De Souza C, Doja A, Mossman K, Resch L, Xia C, Sakic B, Belbeck L, Foster WG. 2012. Anti-NMDA receptor encephalitis. The disorder, the diagnosis and the immunobiology. Autoimmun. Rev. 11:863–872. http://dx.doi.org/10.1016/j.autrev.2012.03.001.
  • Pacheco R, Oliva H, Martinez-Navio JM, Climent N, Ciruela F, Gatell JM, Gallart T, Mallol J, Lluis C, Franco R. 2006. Glutamate released by dendritic cells as a novel modulator of T cell activation. J. Immunol. 177:6695–6704. http://www.jimmunol.org/content/177/10/6695.long.
  • Affaticati P, Mignen O, Jambou F, Potier MC, Klingel-Schmitt I, Degrouard J, Peineau S, Gouadon E, Collingridge GL, Liblau R, Capiod T, Cohen-Kaminsky S. 2011. Sustained calcium signalling and caspase-3 activation involve NMDA receptors in thymocytes in contact with dendritic cells. Cell Death Differ. 18:99–108. http://dx.doi.org/10.1038/cdd.2010.79.
  • Lombardi G, Dianzani C, Miglio G, Canonico PL, Fantozzi R. 2001. Characterization of ionotropic glutamate receptors in human lymphocytes. Br. J. Pharmacol. 133:936–944. http://dx.doi.org/10.1038/sj.bjp.0704134.
  • Nedergaard M, Takano T, Hansen AJ. 2002. Beyond the role of glutamate as a neurotransmitter. Nat. Rev. Neurosci. 3:748–755. http://dx.doi.org/10.1038/nrn916.
  • Boldyrev AA. 2005. Homocysteinic acid causes oxidative stress in lymphocytes by potentiating toxic effect of NMDA. Bull. Exp. Biol. Med. 140:33–37. http://dx.doi.org/10.1007/s10517-005-0404-1.
  • Pacheco R, Gallart T, Lluis C, Franco R. 2007. Role of glutamate on T-cell mediated immunity. J. Neuroimmunol. 185:9–19. http://dx.doi.org/10.1016/j.jneuroim.2007.01.003.
  • Levite M. 2008. Neurotransmitters activate T-cells and elicit crucial functions via neurotransmitter receptors. Curr. Opin. Pharmacol. 8:460–471. http://dx.doi.org/10.1016/j.coph.2008.05.001.
  • Barnden MJ, Allison J, Heath WR, Carbone FR. 1998. Defective TCR expression in transgenic mice constructed using cDNA-based alpha- and beta-chain genes under the control of heterologous regulatory elements. Immunol. Cell Biol. 76:34–40. http://dx.doi.org/10.1046/j.1440-1711.1998.00709.x.
  • Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR. 1994. T cell receptor antagonist peptides induce positive selection. Cell 76:17–27. http://dx.doi.org/10.1016/0092-8674(94)90169-4.
  • Hock M, Vaeth M, Rudolf R, Patra AK, Pham DA, Muhammad K, Pusch T, Bopp T, Schmitt E, Rost R, Berberich-Siebelt F, Tyrsin D, Chuvpilo S, Avots A, Serfling E, Klein-Hessling S. 2013. NFATc1 induction in peripheral T and B lymphocytes. J. Immunol. 190:2345–2353. http://dx.doi.org/10.4049/jimmunol.1201591.
  • Sprengel R, Single FN. 1999. Mice with genetically modified NMDA and AMPA receptors. Ann. N. Y. Acad. Sci. 868:494–501. http://dx.doi.org/10.1111/j.1749-6632.1999.tb11318.x.
  • Schwenk F, Baron U, Rajewsky K. 1995. A cre-transgenic mouse strain for the ubiquitous deletion of loxP-flanked gene segments including deletion in germ cells. Nucleic Acids Res. 23:5080–5081. http://dx.doi.org/10.1093/nar/23.24.5080.
  • Jelitai M, Schlett K, Varju P, Eisel U, Madarasz E. 2002. Regulated appearance of NMDA receptor subunits and channel functions during in vitro neuronal differentiation. J. Neurobiol. 51:54–65. http://dx.doi.org/10.1002/neu.10049.
  • Pierau M, Engelmann S, Reinhold D, Lapp T, Schraven B, Bommhardt UH. 2009. Protein kinase B/Akt signals impair Th17 differentiation and support natural regulatory T cell function and induced regulatory T cell formation. J. Immunol. 183:6124–6134. http://dx.doi.org/10.4049/jimmunol.0900246.
  • Di L, Srivastava S, Zhdanova O, Ding Y, Li Z, Wulff H, Lafaille M, Skolnik EY. 2010. Inhibition of the K+ channel KCa3.1 ameliorates T cell-mediated colitis. Proc. Natl. Acad. Sci. U. S. A. 107:1541–1546. http://dx.doi.org/10.1073/pnas.0910133107.
  • Cahalan MD, Chandy KG, DeCoursey TE, Gupta S. 1985. A voltage-gated potassium channel in human T lymphocytes. J. Physiol. 358:197–237.
  • Kuras Z, Kucher V, Gordon SM, Neumeier LM, Chimote AA, Filipovich AH, Conforti L. 2012. Modulation of Kv1.3 channels by protein kinase A I in T lymphocytes is mediated by the disc large 1-tyrosine kinase Lck complex. Am. J. Physiol. Cell Physiol. 302:C1504–C1512. http://dx.doi.org/10.1152/ajpcell.00263.2011.
  • Wulff H, Miller MJ, Hansel W, Grissmer S, Cahalan MD, Chandy KG. 2000. Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc. Natl. Acad. Sci. U. S. A. 97:8151–8156. http://dx.doi.org/10.1073/pnas.97.14.8151.
  • Chuvpilo S, Jankevics E, Tyrsin D, Akimzhanov A, Moroz D, Jha MK, Schulze-Luehrmann J, Santner-Nanan B, Feoktistova E, Konig T, Avots A, Schmitt E, Berberich-Siebelt F, Schimpl A, Serfling E. 2002. Autoregulation of NFATc1/A expression facilitates effector T cells to escape from rapid apoptosis. Immunity 16:881–895. http://dx.doi.org/10.1016/S1074-7613(02)00329-1.
  • Hogan PG, Lewis RS, Rao A. 2010. Molecular basis of calcium signaling in lymphocytes: STIM and ORAI. Annu. Rev. Immunol. 28:491–533. http://dx.doi.org/10.1146/annurev.immunol.021908.132550.
  • Brabletz T, Pietrowski I, Serfling E. 1991. The immunosuppressives FK 506 and cyclosporin A inhibit the generation of protein factors binding to the two purine boxes of the interleukin 2 enhancer. Nucleic Acids Res. 19:61–67. http://dx.doi.org/10.1093/nar/19.1.61.
  • Na SY, Patra A, Scheuring Y, Marx A, Tolaini M, Kioussis D, Hemmings BA, Hunig T, Bommhardt U. 2003. Constitutively active protein kinase B enhances Lck and Erk activities and influences thymocyte selection and activation. J. Immunol. 171:1285–1296. http://www.jimmunol.org/content/171/3/1285.long.
  • Kane LP, Weiss A. 2003. The PI-3 kinase/Akt pathway and T cell activation: pleiotropic pathways downstream of PIP3. Immunol. Rev. 192:7–20. http://dx.doi.org/10.1034/j.1600-065X.2003.00008.x.
  • Riha P, Rudd CE. 2010. CD28 co-signaling in the adaptive immune response. Self Nonself 1:231–240. http://dx.doi.org/10.4161/self.1.3.12968.
  • Boomer JS, Green JM. 2010. An enigmatic tail of CD28 signaling. Cold Spring Harb. Perspect. Biol. 2:a002436. http://dx.doi.org/10.1101/cshperspect.a002436.
  • Desai R, Peretz A, Idelson H, Lazarovici P, Attali B. 2000. Ca2+-activated K+ channels in human leukemic Jurkat T cells. Molecular cloning, biochemical and functional characterization. J. Biol. Chem. 275:39954–39963. http://dx.doi.org/10.1074/jbc.M001562200.
  • Lam J, Wulff H. 2011. The lymphocyte potassium channels Kv1.3 and KCa3.1 as targets for immunosuppression. Drug Dev. Res. 72:573–584. http://dx.doi.org/10.1002/ddr.20467.
  • Conforti L. 2012. The ion channel network in T lymphocytes, a target for immunotherapy. Clin. Immunol. 142:105–106. http://dx.doi.org/10.1016/j.clim.2011.11.009.
  • Wakamatsu E, Mathis D, Benoist C. 2013. Convergent and divergent effects of costimulatory molecules in conventional and regulatory CD4+ T cells. Proc. Natl. Acad. Sci. U. S. A. 110:1023–1028. http://dx.doi.org/10.1073/pnas.1220688110.
  • Newcomb DC, Boswell MG, Zhou W, Huckabee MM, Goleniewska K, Sevin CM, Hershey GK, Kolls JK, Peebles RSJr. 2011. Human TH17 cells express a functional IL-13 receptor and IL-13 attenuates IL-17A production. J. Allergy Clin. Immunol. 127:1006–1013.e4. http://dx.doi.org/10.1016/j.jaci.2010.11.043.
  • Ozdemir C, Akdis M, Akdis CA. 2009. T regulatory cells and their counterparts: masters of immune regulation. Clin. Exp. Allergy 39:626–639. http://dx.doi.org/10.1111/j.1365-2222.2009.03242.x.
  • Van Dyken SJ, Locksley RM. 2013. Interleukin-4- and interleukin-13-mediated alternatively activated macrophages: roles in homeostasis and disease. Annu. Rev. Immunol. 31:317–343. http://dx.doi.org/10.1146/annurev-immunol-032712-095906.
  • Lindblad SS, Mydel P, Hellvard A, Jonsson IM, Bokarewa MI. 2012. The N-methyl-d-aspartic acid receptor antagonist memantine ameliorates and delays the development of arthritis by enhancing regulatory T cells. Neurosignals 20:61–71. http://dx.doi.org/10.1159/000329551.
  • Pores-Fernando AT, Zweifach A. 2009. Calcium influx and signaling in cytotoxic T-lymphocyte lytic granule exocytosis. Immunol. Rev. 231:160–173. http://dx.doi.org/10.1111/j.1600-065X.2009.00809.x.
  • Quintana A, Pasche M, Junker C, Al-Ansary D, Rieger H, Kummerow C, Nunez L, Villalobos C, Meraner P, Becherer U, Rettig J, Niemeyer BA, Hoth M. 2011. Calcium microdomains at the immunological synapse: how ORAI channels, mitochondria and calcium pumps generate local calcium signals for efficient T-cell activation. EMBO J. 30:3895–3912. http://dx.doi.org/10.1038/emboj.2011.289.
  • Schwarz EC, Qu B, Hoth M. 2013. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells. Biochim. Biophys. Acta 1833:1603–1611. http://dx.doi.org/10.1016/j.bbamcr.2012.11.016.
  • Weidinger C, Shaw PJ, Feske S. 2013. STIM1 and STIM2-mediated Ca(2+) influx regulates antitumour immunity by CD8(+) T cells. EMBO Mol. Med. 5:1311–1321. http://dx.doi.org/10.1002/emmm.201302989.
  • Melzer N, Meuth SG, Wiendl H. 2009. CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability. FASEB J. 23:3659–3673. http://dx.doi.org/10.1096/fj.09-136200.
  • Boldyrev AA, Carpenter DO, Johnson P. 2005. Emerging evidence for a similar role of glutamate receptors in the nervous and immune systems. J. Neurochem. 95:913–918. http://dx.doi.org/10.1111/j.1471-4159.2005.03456.x.
  • Racca C, Stephenson FA, Streit P, Roberts JD, Somogyi P. 2000. NMDA receptor content of synapses in stratum radiatum of the hippocampal CA1 area. J. Neurosci. 20:2512–2522. http://www.jneurosci.org/content/20/7/2512.long.
  • Feske S. 2007. Calcium signalling in lymphocyte activation and disease. Nat. Rev. Immunol. 7:690–702. http://dx.doi.org/10.1038/nri2152.
  • Dingledine R, Hynes MA, King GL. 1986. Involvement of N-methyl-D-aspartate receptors in epileptiform bursting in the rat hippocampal slice. J. Physiol. 380:175–189.
  • Cahalan MD, Chandy KG. 2009. The functional network of ion channels in T lymphocytes. Immunol. Rev. 231:59–87. http://dx.doi.org/10.1111/j.1600-065X.2009.00816.x.
  • Wulff H, Zhorov BS. 2008. K+ channel modulators for the treatment of neurological disorders and autoimmune diseases. Chem. Rev. 108:1744–1773. http://dx.doi.org/10.1021/cr078234p.
  • Hu L, Pennington M, Jiang Q, Whartenby KA, Calabresi PA. 2007. Characterization of the functional properties of the voltage-gated potassium channel Kv1.3 in human CD4+ T lymphocytes. J. Immunol. 179:4563–4570. http://www.jimmunol.org/content/179/7/4563.long.
  • Hu L, Wang T, Gocke AR, Nath A, Zhang H, Margolick JB, Whartenby KA, Calabresi PA. 2013. Blockade of Kv1.3 potassium channels inhibits differentiation and granzyme B secretion of human CD8+ T effector memory lymphocytes. PLoS One 8:e54267. http://dx.doi.org/10.1371/journal.pone.0054267.
  • Varga Z, Csepany T, Papp F, Fabian A, Gogolak P, Toth A, Panyi G. 2009. Potassium channel expression in human CD4+ regulatory and naive T cells from healthy subjects and multiple sclerosis patients. Immunol. Lett. 124:95–101. http://dx.doi.org/10.1016/j.imlet.2009.04.008.
  • Reneer MC, Estes DJ, Velez-Ortega AC, Norris A, Mayer M, Marti F. 2011. Peripherally induced human regulatory T cells uncouple Kv1.3 activation from TCR-associated signaling. Eur. J. Immunol. 41:3170–3175. http://dx.doi.org/10.1002/eji.201141492.
  • Delaney AJ, Power JM, Sah P. 2012. Ifenprodil reduces excitatory synaptic transmission by blocking presynaptic P/Q type calcium channels. J. Neurophysiol. 107:1571–1575. http://dx.doi.org/10.1152/jn.01066.2011.
  • Omilusik K, Priatel JJ, Chen X, Wang YT, Xu H, Choi KB, Gopaul R, McIntyre-Smith A, Teh HS, Tan R, Bech-Hansen NT, Waterfield D, Fedida D, Hunt SV, Jefferies WA. 2011. The Ca(v)1.4 calcium channel is a critical regulator of T cell receptor signaling and naive T cell homeostasis. Immunity 35:349–360. http://dx.doi.org/10.1016/j.immuni.2011.07.011.
  • Zainullina LF, Yamidanov RS, Vakhitov VA, Vakhitova YV. 2011. NMDA receptors as a possible component of store-operated Ca(2)(+) entry in human T-lymphocytes. Biochemistry (Mosc.) 76:1220–1226. http://dx.doi.org/10.1134/S0006297911110034.
  • Shaw PJ, Qu B, Hoth M, Feske S. 2013. Molecular regulation of CRAC channels and their role in lymphocyte function. Cell. Mol. Life Sci. 70:2637–2656. http://dx.doi.org/10.1007/s00018-012-1175-2.
  • Feske S. 2013. Ca(2+) influx in T cells: how many Ca(2+) channels? Front. Immunol. 4:99. http://dx.doi.org/10.3389/fimmu.2013.00099.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.