47
Views
16
CrossRef citations to date
0
Altmetric
Article

Protein Kinase C-Dependent Growth-Associated Protein 43 Phosphorylation Regulates Gephyrin Aggregation at Developing GABAergic Synapses

, , , , , , , , , , , & show all
Pages 1712-1726 | Received 05 Nov 2014, Accepted 24 Feb 2015, Published online: 20 Mar 2023

REFERENCES

  • Alldred MJ, Mulder-Rosi J, Lingenfelter SE, Chen G, Luscher B. 2005. Distinct gamma2 subunit domains mediate clustering and synaptic function of postsynaptic GABAA receptors and gephyrin. J Neurosci 25:594–603. http://dx.doi.org/10.1523/JNEUROSCI.4011-04.2005.
  • Ben-Ari Y. 2002. Excitatory actions of gaba during development: the nature of the nurture. Nat Rev Neurosci 3:728–739. http://dx.doi.org/10.1038/nrn920.
  • Mohler H. 2007. Molecular regulation of cognitive functions and developmental plasticity: impact of GABAA receptors. J Neurochem 102:1–12. http://dx.doi.org/10.1111/j.1471-4159.2007.04454.x.
  • Fritschy JM, Brunig I. 2003. Formation and plasticity of GABAergic synapses: physiological mechanisms and pathophysiological implications. Pharmacol Ther 98:299–323. http://dx.doi.org/10.1016/S0163-7258(03)00037-8.
  • Bedford FK, Kittler JT, Muller E, Thomas P, Uren JM, Merlo D, Wisden W, Triller A, Smart TG, Moss SJ. 2001. GABA(A) receptor cell surface number and subunit stability are regulated by the ubiquitin-like protein Plic-1. Nat Neurosci 4:908–916. http://dx.doi.org/10.1038/nn0901-908.
  • Essrich C, Lorez M, Benson JA, Fritschy JM, Luscher B. 1998. Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat Neurosci 1:563–571. http://dx.doi.org/10.1038/2798.
  • Fritschy JM, Harvey RJ, Schwarz G. 2008. Gephyrin: where do we stand, where do we go? Trends Neurosci 31:257–264. http://dx.doi.org/10.1016/j.tins.2008.02.006.
  • Kneussel M, Brandstatter JH, Laube B, Stahl S, Muller U, Betz H. 1999. Loss of postsynaptic GABA(A) receptor clustering in gephyrin-deficient mice. J Neurosci 19:9289–9297.
  • Jacob TC, Bogdanov YD, Magnus C, Saliba RS, Kittler JT, Haydon PG, Moss SJ. 2005. Gephyrin regulates the cell surface dynamics of synaptic GABAA receptors. J Neurosci 25:10469–10478. http://dx.doi.org/10.1523/JNEUROSCI.2267-05.2005.
  • Kneussel M, Betz H. 2000. Clustering of inhibitory neurotransmitter receptors at developing postsynaptic sites: the membrane activation model. Trends Neurosci 23:429–435. http://dx.doi.org/10.1016/S0166-2236(00)01627-1.
  • Saiyed T, Paarmann I, Schmitt B, Haeger S, Sola M, Schmalzing G, Weissenhorn W, Betz H. 2007. Molecular basis of gephyrin clustering at inhibitory synapses: role of G- and E-domain interactions. J Biol Chem 282:5625–5632. http://dx.doi.org/10.1074/jbc.M610290200.
  • Zita MM, Marchionni I, Bottos E, Righi M, Del Sal G, Cherubini E, Zacchi P. 2007. Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. EMBO J 26:1761–1771. http://dx.doi.org/10.1038/sj.emboj.7601625.
  • Harvey K, Duguid IC, Alldred MJ, Beatty SE, Ward H, Keep NH, Lingenfelter SE, Pearce BR, Lundgren J, Owen MJ, Smart TG, Luscher B, Rees MI, Harvey RJ. 2004. The GDP-GTP exchange factor collybistin: an essential determinant of neuronal gephyrin clustering. J Neurosci 24:5816–5826. http://dx.doi.org/10.1523/JNEUROSCI.1184-04.2004.
  • Bausen M, Fuhrmann JC, Betz H, O'Sullivan GA. 2006. The state of the actin cytoskeleton determines its association with gephyrin: role of ena/VASP family members. Mol Cell Neurosci 31:376–386. http://dx.doi.org/10.1016/j.mcn.2005.11.004.
  • Giesemann T, Schwarz G, Nawrotzki R, Berhorster K, Rothkegel M, Schluter K, Schrader N, Schindelin H, Mendel RR, Kirsch J, Jockusch BM. 2003. Complex formation between the postsynaptic scaffolding protein gephyrin, profilin, and Mena: a possible link to the microfilament system. J Neurosci 23:8330–8339.
  • Strittmatter SM, Fankhauser C, Huang PL, Mashimo H, Fishman MC. 1995. Neuronal pathfinding is abnormal in mice lacking the neuronal growth cone protein GAP-43. Cell 80:445–452. http://dx.doi.org/10.1016/0092-8674(95)90495-6.
  • He Q, Dent EW, Meiri KF. 1997. Modulation of actin filament behavior by GAP-43 (neuromodulin) is dependent on the phosphorylation status of serine 41, the protein kinase C site. J Neurosci 17:3515–3524.
  • Benowitz LI, Routtenberg A. 1997. GAP-43: an intrinsic determinant of neuronal development and plasticity. Trends Neurosci 20:84–91. http://dx.doi.org/10.1016/S0166-2236(96)10072-2.
  • Liu YC, Storm DR. 1989. Dephosphorylation of neuromodulin by calcineurin. J Biol Chem 264:12800–12804.
  • Skene JH. 1989. Axonal growth-associated proteins. Annu Rev Neurosci 12:127–156. http://dx.doi.org/10.1146/annurev.ne.12.030189.001015.
  • Chan SY, Murakami K, Routtenberg A. 1986. Phosphoprotein F1: purification and characterization of a brain kinase C substrate related to plasticity. J Neurosci 6:3618–3627.
  • Holahan M, Routtenberg A. 2008. The protein kinase C phosphorylation site on GAP-43 differentially regulates information storage. Hippocampus 18:1099–1102. http://dx.doi.org/10.1002/hipo.20486.
  • McIlvain VA, Robertson DR, Maimone MM, McCasland JS. 2003. Abnormal thalamocortical pathfinding and terminal arbors lead to enlarged barrels in neonatal GAP-43 heterozygous mice. J Comp Neurol 462:252–264. http://dx.doi.org/10.1002/cne.10725.
  • Dubroff JG, Stevens RT, Hitt J, Hodge CJ Jr, McCasland JS. 2006. Anomalous functional organization of barrel cortex in GAP-43 deficient mice. Neuroimage 29:1040–1048. http://dx.doi.org/10.1016/j.neuroimage.2005.08.054.
  • Zaccaria KJ, Lagace DC, Eisch AJ, McCasland JS. 2010. Resistance to change and vulnerability to stress: autistic-like features of GAP43-deficient mice. Genes Brain Behav 9:985–996. http://dx.doi.org/10.1111/j.1601-183X.2010.00638.x.
  • Rekart JL, Quinn B, Mesulam MM, Routtenberg A. 2004. Subfield-specific increase in brain growth protein in postmortem hippocampus of Alzheimer's patients. Neuroscience 126:579–584. http://dx.doi.org/10.1016/j.neuroscience.2004.03.060.
  • Linden DJ, Routtenberg A. 1989. The role of protein kinase C in long-term potentiation: a testable model. Brain Res Brain Res Rev 14:279–296. http://dx.doi.org/10.1016/0165-0173(89)90004-0.
  • Benowitz LI, Apostolides PJ, Perrone-Bizzozero N, Finklestein SP, Zwiers H. 1988. Anatomical distribution of the growth-associated protein GAP-43/B-50 in the adult rat brain. J Neurosci 8:339–352.
  • National Research Council. 2011. Guide for the care and use of laboratory animals, 8th ed. National Academies Press, Washington, DC.
  • Lin CH, Chen CC, Chou CM, Wang CY, Hung CC, Chen JY, Chang HW, Chen YC, Yeh GC, Lee YH. 2009. Knockdown of the aryl hydrocarbon receptor attenuates excitotoxicity and enhances NMDA-induced BDNF expression in cortical neurons. J Neurochem 111:777–789. http://dx.doi.org/10.1111/j.1471-4159.2009.06364.x.
  • Wang CY, Liang YJ, Lin YS, Shih HM, Jou YS, Yu WC. 2004. YY1AP, a novel co-activator of YY1. J Biol Chem 279:17750–17755. http://dx.doi.org/10.1074/jbc.M310532200.
  • Shen D, Coleman J, Chan E, Nicholson TP, Dai L, Sheppard PW, Patton WF. 2011. Novel cell- and tissue-based assays for detecting misfolded and aggregated protein accumulation within aggresomes and inclusion bodies. Cell Biochem Biophys 60:173–185. http://dx.doi.org/10.1007/s12013-010-9138-4.
  • Meiri KF, Hammang JP, Dent EW, Baetge EE. 1996. Mutagenesis of ser41 to ala inhibits the association of GAP-43 with the membrane skeleton of GAP-43-deficient PC12B cells: effects on cell adhesion and the composition of neurite cytoskeleton and membrane. J Neurobiol 29:213–232. http://dx.doi.org/10.1002/(SICI)1097-4695(199602)29:2<213::AID-NEU7>3.0.CO;2-D.
  • Nakamura F, Strittmatter P, Strittmatter SM. 1998. GAP-43 augmentation of G protein-mediated signal transduction is regulated by both phosphorylation and palmitoylation. J Neurochem 70:983–992.
  • Lin CH, Juan SH, Wang CY, Sun YY, Chou CM, Chang SF, Hu SY, Lee WS, Lee YH. 2008. Neuronal activity enhances aryl hydrocarbon receptor-mediated gene expression and dioxin neurotoxicity in cortical neurons. J Neurochem 104:1415–1429. http://dx.doi.org/10.1111/j.1471-4159.2007.05098.x.
  • Xiang H, Hochman DW, Saya H, Fujiwara T, Schwartzkroin PA, Morrison RS. 1996. Evidence for p53-mediated modulation of neuronal viability. J Neurosci 16:6753–6765.
  • Yang D, Sun YY, Nemkul N, Baumann JM, Shereen A, Dunn RS, Wills-Karp M, Lawrence DA, Lindquist DM, Kuan CY. 2013. Plasminogen activator inhibitor-1 mitigates brain injury in a rat model of infection-sensitized neonatal hypoxia-ischemia. Cereb Cortex 23:1218–1229. http://dx.doi.org/10.1093/cercor/bhs115.
  • Sun YY, Morozov YM, Yang D, Li Y, Dunn RS, Rakic P, Chan PH, Abe K, Lindquist DM, Kuan CY. 2014. Synergy of combined tPA-edaravone therapy in experimental thrombotic stroke. PLoS One 9:e98807. http://dx.doi.org/10.1371/journal.pone.0098807.
  • Rice JE III, Vannucci RC, Brierley JB. 1981. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Ann Neurol 9:131–141. http://dx.doi.org/10.1002/ana.410090206.
  • Yin KJ, Chen SD, Lee JM, Xu J, Hsu CY. 2002. ATM gene regulates oxygen-glucose deprivation-induced nuclear factor-kappaB DNA-binding activity and downstream apoptotic cascade in mouse cerebrovascular endothelial cells. Stroke 33:2471–2477. http://dx.doi.org/10.1161/01.STR.0000030316.79601.03.
  • Chao S, Benowitz LI, Krainc D, Irwin N. 1996. Use of a two-hybrid system to investigate molecular interactions of GAP-43. Brain Res Mol Brain Res 40:195–202. http://dx.doi.org/10.1016/0169-328X(96)00049-6.
  • Pascale A, Amadio M, Scapagnini G, Lanni C, Racchi M, Provenzani A, Govoni S, Alkon DL, Quattrone A. 2005. Neuronal ELAV proteins enhance mRNA stability by a PKCalpha-dependent pathway. Proc Natl Acad Sci U S A 102:12065–12070. http://dx.doi.org/10.1073/pnas.0504702102.
  • Mayer S, Kumar R, Jaiswal M, Soykan T, Ahmadian MR, Brose N, Betz H, Rhee JS, Papadopoulos T. 2013. Collybistin activation by GTP-TC10 enhances postsynaptic gephyrin clustering and hippocampal GABAergic neurotransmission. Proc Natl Acad Sci U S A 110:20795–20800. http://dx.doi.org/10.1073/pnas.1309078110.
  • Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. 2007. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87:1215–1284. http://dx.doi.org/10.1152/physrev.00017.2006.
  • Lyons WE, George EB, Dawson TM, Steiner JP, Snyder SH. 1994. Immunosuppressant FK506 promotes neurite outgrowth in cultures of PC12 cells and sensory ganglia. Proc Natl Acad Sci U S A 91:3191–3195. http://dx.doi.org/10.1073/pnas.91.8.3191.
  • Lardi-Studler B, Smolinsky B, Petitjean CM, Koenig F, Sidler C, Meier JC, Fritschy JM, Schwarz G. 2007. Vertebrate-specific sequences in the gephyrin E-domain regulate cytosolic aggregation and postsynaptic clustering. J Cell Sci 120:1371–1382. http://dx.doi.org/10.1242/jcs.003905.
  • Machado P, Rostaing P, Guigonis J-M, Renner M, Dumoulin A, Samson M, Vannier C, Triller A. 2011. Heat shock cognate protein 70 regulates gephyrin clustering. J Neurosci 31:3–14. http://dx.doi.org/10.1523/JNEUROSCI.2533-10.2011.
  • Kopito RR. 2000. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530. http://dx.doi.org/10.1016/S0962-8924(00)01852-3.
  • Johnston JA, Ward CL, Kopito RR. 1998. Aggresomes: a cellular response to misfolded proteins. J Cell Biol 143:1883–1898. http://dx.doi.org/10.1083/jcb.143.7.1883.
  • Song M, Messing RO. 2005. Protein kinase C regulation of GABAA receptors. Cell Mol Life Sci 62:119–127. http://dx.doi.org/10.1007/s00018-004-4339-x.
  • Wang J, Liu S, Haditsch U, Tu W, Cochrane K, Ahmadian G, Tran L, Paw J, Wang Y, Mansuy I, Salter MM, Lu YM. 2003. Interaction of calcineurin and type-A GABA receptor gamma 2 subunits produces long-term depression at CA1 inhibitory synapses. J Neurosci 23:826–836.
  • Wong KL, Murakami K, Routtenberg A. 1989. Dietary cis-fatty acids that increase protein F1 phosphorylation enhance spatial memory. Brain Res 505:302–305. http://dx.doi.org/10.1016/0006-8993(89)91456-X.
  • Nakajima K, Yin X, Takei Y, Seog DH, Homma N, Hirokawa N. 2012. Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Neuron 76:945–961. http://dx.doi.org/10.1016/j.neuron.2012.10.012.
  • Robinson S. 2005. Systemic prenatal insults disrupt telencephalon development: implications for potential interventions. Epilepsy Behav 7:345–363. http://dx.doi.org/10.1016/j.yebeh.2005.06.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.