21
Views
16
CrossRef citations to date
0
Altmetric
Article

Overexpression of the Insulin-Like Growth Factor II Receptor Increases β-Amyloid Production and Affects Cell Viability

, , , , , & show all
Pages 2368-2384 | Received 04 Nov 2014, Accepted 20 Apr 2015, Published online: 20 Mar 2023

REFERENCES

  • Bertram L, Tanzi RE. 2012. The genetics of Alzheimer's disease. Prog Mol Biol Transl Sci 107:79–100. http://dx.doi.org/10.1016/B978-0-12-385883-2.00008-4.
  • Selkoe DJ. 2011. Alzheimer's disease. Cold Spring Harb Perspect Biol 3:a004457. http://dx.doi.org/10.1101/cshperspect.a004457.
  • Karch CM, Cruchaga C, Goate AM. 2014. Alzheimer's disease genetics: from the bench to the clinic. Neuron 83:11–26. http://dx.doi.org/10.1016/j.neuron.2014.05.041.
  • Nelson PT, Braak H, Markesbery WR. 2009. Neuropathology and cognitive impairment in Alzheimer disease: a complex but coherent relationship. J Neuropathol Exp Neurol 68:1–14. http://dx.doi.org/10.1097/NEN.0b013e3181919a48.
  • Thinakaran G, Koo EH. 2008. Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283:29615–29619. http://dx.doi.org/10.1074/jbc.R800019200.
  • Haass C, Kaether C, Thinakaran G, Sisodia S. 2012. Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2:a006270. http://dx.doi.org/10.1101/cshperspect.a006270.
  • Ghosh P, Dahms NM, Kornfeld S. 2003. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol 4:202–212. http://dx.doi.org/10.1038/nrm1050.
  • Hawkes C, Kar S. 2004. The insulin-like growth factor-II/mannose-6-phosphate receptor: structure, distribution and function in the central nervous system. Brain Res Brain Res Rev 44:117–140. http://dx.doi.org/10.1016/j.brainresrev.2003.11.002.
  • El-Shewy HM, Luttrell LM. 2009. Insulin-like growth factor-2/mannose-6 phosphate receptors. Vitam Horm 80:667–697. http://dx.doi.org/10.1016/S0083-6729(08)00624-9.
  • Kar S, Seto D, Dore S, Hanisch U, Quirion R. 1997. Insulin-like growth factors-I and -II differentially regulate endogenous acetylcholine release from the rat hippocampal formation. Proc Natl Acad Sci U S A 94:14054–14059. http://dx.doi.org/10.1073/pnas.94.25.14054.
  • Dikkes P, Hawkes C, Kar S, Lopez MF. 2007. Effect of kainic acid treatment on insulin-like growth factor-2 receptors in the IGF2-deficient adult mouse brain. Brain Res 1131:77–87. http://dx.doi.org/10.1016/j.brainres.2006.11.022.
  • Couce ME, Weatherington AJ, McGinty JF. 1992. Expression of insulin-like growth factor-II (IGF-II) and IGF-II/mannose-6-phosphate receptor in the rat hippocampus: an in situ hybridization and immunocytochemical study. Endocrinology 131:1636–1642. http://dx.doi.org/10.1210/en.131.4.1636.
  • Kar S, Chabot JG, Quirion R. 1993. Quantitative autoradiographic localization of [125I]insulin-like growth factor I, [125I]insulin-like growth factor II, and [125I]insulin receptor binding sites in developing and adult rat brain. J Comp Neurol 333:375–397. http://dx.doi.org/10.1002/cne.903330306.
  • Kar S, Baccichet A, Quirion R, Poirier J. 1993. Entorhinal cortex lesion induces differential responses in [125I]insulin-like growth factor I, [125I]insulin-like growth factor II and [125I]insulin receptor binding sites in the rat hippocampal formation. Neuroscience 55:69–80. http://dx.doi.org/10.1016/0306-4522(93)90455-O.
  • Stephenson DT, Rash K, Clemens JA. 1995. Increase in insulin-like growth factor II receptor within ischemic neurons following focal cerebral infarction. J Cereb Blood Flow Metab 15:1022–1031. http://dx.doi.org/10.1038/jcbfm.1995.128.
  • Breese CR, D'Costa A, Rollins YD, Adams C, Booze RM, Sonntag WE, Leonard S. 1996. Expression of insulin-like growth factor-1 (IGF-1) and IGF-binding protein 2 (IGF-BP2) in the hippocampus following cytotoxic lesion of the dentate gyrus. J Comp Neurol 369:388–404.
  • Walter HJ, Berry M, Hill DJ, Cwyfan-Hughes S, Holly JM, Logan A. 1999. Distinct sites of insulin-like growth factor (IGF)-II expression and localization in lesioned rat brain: possible roles of IGF binding proteins (IGFBPs) in the mediation of IGF-II activity. Endocrinology 140:520–532.
  • Hawkes C, Kar S. 2003. Insulin-like growth factor-II/mannose-6-phosphate receptor: widespread distribution in neurons of the central nervous system including those expressing cholinergic phenotype. J Comp Neurol 458:113–127. http://dx.doi.org/10.1002/cne.10578.
  • Hawkes C, Kabogo D, Amritraj A, Kar S. 2006. Up-regulation of cation-independent mannose 6-phosphate receptor and endosomal-lysosomal markers in surviving neurons after 192-IgG-saporin administrations into the adult rat brain. Am J Pathol 169:1140–1154. http://dx.doi.org/10.2353/ajpath.2006.051208.
  • Konishi Y, Fushimi S, Shirabe T. 2005. Immunohistochemical distribution of cation-dependent mannose 6-phosphate receptors in the mouse central nervous system: comparison with that of cation-independent mannose 6-phophate receptors. Neurosci Lett 378:7–12. http://dx.doi.org/10.1016/j.neulet.2004.12.067.
  • Pasternak SH, Callahan JW, Mahuran DJ. 2004. The role of the endosomal/lysosomal system in amyloid-beta production and the pathophysiology of Alzheimer's disease: reexamining the spatial paradox from a lysosomal perspective. J Alzheimers Dis 6:53–65.
  • Nixon RA, Cataldo AM. 2006. Lysosomal system pathways: genes to neurodegeneration in Alzheimer's disease. J Alzheimers Dis 9:277–289.
  • Kar S, Poirier J, Guevara J, Dea D, Hawkes C, Robitaille Y, Quirion R. 2006. Cellular distribution of insulin-like growth factor-II/mannose-6-phosphate receptor in normal human brain and its alteration in Alzheimer's disease pathology. Neurobiol Aging 27:199–210. http://dx.doi.org/10.1016/j.neurobiolaging.2005.03.005.
  • Cataldo AM, Peterhoff CM, Schmidt SD, Terio NB, Duff K, Beard M, Mathews PM, Nixon RA. 2004. Presenilin mutations in familial Alzheimer disease and transgenic mouse models accelerate neuronal lysosomal pathology. J Neuropathol Exp Neurol 63:821–830.
  • Amritraj A, Hawkes C, Phinney AL, Mount HT, Scott CD, Westaway D, Kar S. 2009. Altered levels and distribution of IGF-II/M6P receptor and lysosomal enzymes in mutant APP and APP + PS1 transgenic mouse brains. Neurobiol Aging 30:54–70. http://dx.doi.org/10.1016/j.neurobiolaging.2007.05.004.
  • Watanabe H, Grubb JH, Sly WS. 1990. The overexpressed human 46-kDa mannose 6-phosphate receptor mediates endocytosis and sorting of beta-glucuronidase. Proc Natl Acad Sci U S A 87:8036–8040. http://dx.doi.org/10.1073/pnas.87.20.8036.
  • Nolan CM, Kyle JW, Watanabe H, Sly WS. 1990. Binding of insulin-like growth factor II (IGF-II) by human cation-independent mannose 6-phosphate receptor/IGF-II receptor expressed in receptor-deficient mouse L cells. Cell Regul 1:197–213.
  • Wood RJ, Hulett MD. 2008. Cell surface-expressed cation-independent mannose 6-phosphate receptor (CD222) binds enzymatically active heparanase independently of mannose 6-phosphate to promote extracellular matrix degradation. J Biol Chem 283:4165–4176. http://dx.doi.org/10.1074/jbc.M708723200.
  • Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M, Barry M, Shostak I, Sawchuk T, Holmes CF, Gauldie J, Bleackley RC. 2000. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 103:491–500. http://dx.doi.org/10.1016/S0092-8674(00)00140-9.
  • Di Bacco A, Gill G. 2003. The secreted glycoprotein CREG inhibits cell growth dependent on the mannose-6-phosphate/insulin-like growth factor II receptor. Oncogene 22:5436–5445. http://dx.doi.org/10.1038/sj.onc.1206670.
  • Oshima A, Nolan CM, Kyle JW, Grubb JH, Sly WS. 1988. The human cation-independent mannose 6-phosphate receptor. Cloning and sequence of the full-length cDNA and expression of functional receptor in COS cells. J Biol Chem 263:2553–2562.
  • Dutta D, Williamson CD, Cole NB, Donaldson JG. 2012. Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis. PLoS One 7:e45799. http://dx.doi.org/10.1371/journal.pone.0045799.
  • Amritraj A, Wang Y, Revett TJ, Vergote D, Westaway D, Kar S. 2013. Role of cathepsin D in U18666A-induced neuronal cell death: potential implication in Niemann-Pick type C disease pathogenesis. J Biol Chem 288:3136–3152. http://dx.doi.org/10.1074/jbc.M112.412460.
  • Kreiling JL, Montgomery MA, Wheeler JR, Kopanic JL, Connelly CM, Zavorka ME, Allison JL, Macdonald RG. 2012. Dominant-negative effect of truncated mannose 6-phosphate/insulin-like growth factor II receptor species in cancer. FEBS J 279:2695–2713. http://dx.doi.org/10.1111/j.1742-4658.2012.08652.x.
  • Grimm MO, Grimm HS, Tomic I, Beyreuther K, Hartmann T, Bergmann C. 2008. Independent inhibition of Alzheimer disease beta- and gamma-secretase cleavage by lowered cholesterol levels. J Biol Chem 283:11302–11311. http://dx.doi.org/10.1074/jbc.M801520200.
  • Byrd JC, Park JH, Schaffer BS, Garmroudi F, MacDonald RG. 2000. Dimerization of the insulin-like growth factor II/mannose 6-phosphate receptor. J Biol Chem 275:18647–18656. http://dx.doi.org/10.1074/jbc.M001273200.
  • Maulik M, Ghoshal B, Kim J, Wang Y, Yang J, Westaway D, Kar S. 2012. Mutant human APP exacerbates pathology in a mouse model of NPC and its reversal by a beta-cyclodextrin. Hum Mol Genet 21:4857–4875. http://dx.doi.org/10.1093/hmg/dds322.
  • Wang Y, Thinakaran G, Kar S. 2014. Overexpression of the IGF-II/M6P receptor in mouse fibroblast cell lines differentially alters expression profiles of genes involved in Alzheimer's disease-related pathology. PLoS One 9:e98057. http://dx.doi.org/10.1371/journal.pone.0098057.
  • Hawkes C, Jhamandas JH, Harris KH, Fu W, MacDonald RG, Kar S. 2006. Single transmembrane domain insulin-like growth factor-II/mannose-6-phosphate receptor regulates central cholinergic function by activating a G-protein-sensitive, protein kinase C-dependent pathway. J Neurosci 26:585–596. http://dx.doi.org/10.1523/JNEUROSCI.2730-05.2006.
  • Kojro E, Gimpl G, Lammich S, Marz W, Fahrenholz F. 2001. Low cholesterol stimulates the nonamyloidogenic pathway by its effect on the alpha-secretase ADAM 10. Proc Natl Acad Sci U S A 98:5815–5820. http://dx.doi.org/10.1073/pnas.081612998.
  • Vetrivel KS, Cheng H, Lin W, Sakurai T, Li T, Nukina N, Wong PC, Xu H, Thinakaran G. 2004. Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem 279:44945–44954. http://dx.doi.org/10.1074/jbc.M407986200.
  • Wahrle S, Das P, Nyborg AC, McLendon C, Shoji M, Kawarabayashi T, Younkin LH, Younkin SG, Golde TE. 2002. Cholesterol-dependent gamma-secretase activity in buoyant cholesterol-rich membrane microdomains. Neurobiol Dis 9:11–23. http://dx.doi.org/10.1006/nbdi.2001.0470.
  • Ehehalt R, Keller P, Haass C, Thiele C, Simons K. 2003. Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160:113–123. http://dx.doi.org/10.1083/jcb.200207113.
  • Cheng H, Vetrivel KS, Gong P, Meckler X, Parent A, Thinakaran G. 2007. Mechanisms of disease: new therapeutic strategies for Alzheimer's disease–targeting APP processing in lipid rafts. Nat Clin Pract Neurol 3:374–382. http://dx.doi.org/10.1038/ncpneuro0549.
  • Torgersen ML, Skretting G, van Deurs B, Sandvig K. 2001. Internalization of cholera toxin by different endocytic mechanisms. J Cell Sci 114:3737–3747.
  • Le PU, Nabi IR. 2003. Distinct caveolae-mediated endocytic pathways target the Golgi apparatus and the endoplasmic reticulum. J Cell Sci 116:1059–1071. http://dx.doi.org/10.1242/jcs.00327.
  • Berger-Sweeney J, McPhie DL, Arters JA, Greenan J, Oster-Granite ML, Neve RL. 1999. Impairments in learning and memory accompanied by neurodegeneration in mice transgenic for the carboxyl-terminus of the amyloid precursor protein. Brain Res Mol Brain Res 66:150–162. http://dx.doi.org/10.1016/S0169-328X(99)00014-5.
  • McPhie DL, Golde T, Eckman CB, Yager D, Brant JB, Neve RL. 2001. Beta-secretase cleavage of the amyloid precursor protein mediates neuronal apoptosis caused by familial Alzheimer's disease mutations. Brain Res Mol Brain Res 97:103–113. http://dx.doi.org/10.1016/S0169-328X(01)00294-7.
  • Herbert JM, Seban E, Maffrand JP. 1990. Characterization of specific binding sites for [3H]-staurosporine on various protein kinases. Biochem Biophys Res Commun 171:189–195. http://dx.doi.org/10.1016/0006-291X(90)91375-3.
  • Ruegg UT, Burgess GM. 1989. Staurosporine, K-252 and UCN-01: potent but nonspecific inhibitors of protein kinases. Trends Pharmacol Sci 10:218–220. http://dx.doi.org/10.1016/0165-6147(89)90263-0.
  • Thinakaran G, Borchelt DR, Lee MK, Slunt HH, Spitzer L, Kim G, Ratovitsky T, Davenport F, Nordstedt C, Seeger M, Hardy J, Levey AI, Gandy SE, Jenkins NA, Copeland NG, Price DL, Sisodia SS. 1996. Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17:181–190. http://dx.doi.org/10.1016/S0896-6273(00)80291-3.
  • Thinakaran G, Harris CL, Ratovitski T, Davenport F, Slunt HH, Price DL, Borchelt DR, Sisodia SS. 1997. Evidence that levels of presenilins (PS1 and PS2) are coordinately regulated by competition for limiting cellular factors. J Biol Chem 272:28415–28422. http://dx.doi.org/10.1074/jbc.272.45.28415.
  • Takasugi N, Tomita T, Hayashi I, Tsuruoka M, Niimura M, Takahashi Y, Thinakaran G, Iwatsubo T. 2003. The role of presenilin cofactors in the gamma-secretase complex. Nature 422:438–441. http://dx.doi.org/10.1038/nature01506.
  • Miners JS, Baig S, Palmer J, Palmer LE, Kehoe PG, Love S. 2008. Abeta-degrading enzymes in Alzheimer's disease. Brain Pathol 18:240–252. http://dx.doi.org/10.1111/j.1750-3639.2008.00132.x.
  • Saido T, Leissring MA. 2012. Proteolytic degradation of amyloid beta-protein. Cold Spring Harb Perspect Med 2:a006379. http://dx.doi.org/10.1101/cshperspect.a006379.
  • Maulik M, Westaway D, Jhamandas JH, Kar S. 2013. Role of cholesterol in APP metabolism and its significance in Alzheimer's disease pathogenesis. Mol Neurobiol 47:37–63. http://dx.doi.org/10.1007/s12035-012-8337-y.
  • Hemming ML, Elias JE, Gygi SP, Selkoe DJ. 2009. Identification of beta-secretase (BACE1) substrates using quantitative proteomics. PLoS One 4:e8477. http://dx.doi.org/10.1371/journal.pone.0008477.
  • Haque A, Banik NL, Ray SK. 2008. New insights into the roles of endolysosomal cathepsins in the pathogenesis of Alzheimer's disease: cathepsin inhibitors as potential therapeutics. CNS Neurol Disord Drug Targets 7:270–277. http://dx.doi.org/10.2174/187152708784936653.
  • Yamashima T. 2013. Reconsider Alzheimer's disease by the “calpain-cathepsin hypothesis”–a perspective review. Prog Neurobiol 105:1–23. http://dx.doi.org/10.1016/j.pneurobio.2013.02.004.
  • Mathews PM, Guerra CB, Jiang Y, Grbovic OM, Kao BH, Schmidt SD, Dinakar R, Mercken M, Hille-Rehfeld A, Rohrer J, Mehta P, Cataldo AM, Nixon RA. 2002. Alzheimer's disease-related overexpression of the cation-dependent mannose 6-phosphate receptor increases Abeta secretion: role for altered lysosomal hydrolase distribution in beta-amyloidogenesis. J Biol Chem 277:5299–5307. http://dx.doi.org/10.1074/jbc.M108161200.
  • Ghosh P, Griffith J, Geuze HJ, Kornfeld S. 2003. Mammalian GGAs act together to sort mannose 6-phosphate receptors. J Cell Biol 163:755–766. http://dx.doi.org/10.1083/jcb.200308038.
  • He X, Li F, Chang WP, Tang J. 2005. GGA proteins mediate the recycling pathway of memapsin 2 (BACE). J Biol Chem 280:11696–11703. http://dx.doi.org/10.1074/jbc.M411296200.
  • Wahle T, Prager K, Raffler N, Haass C, Famulok M, Walter J. 2005. GGA proteins regulate retrograde transport of BACE1 from endosomes to the trans-Golgi network. Mol Cell Neurosci 29:453–461. http://dx.doi.org/10.1016/j.mcn.2005.03.014.
  • Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS. 2004. Role of the mammalian retromer in sorting of the cation-independent mannose 6-phosphate receptor. J Cell Biol 165:123–133. http://dx.doi.org/10.1083/jcb.200312055.
  • Seaman MN. 2005. Recycle your receptors with retromer. Trends Cell Biol 15:68–75. http://dx.doi.org/10.1016/j.tcb.2004.12.004.
  • McGough IJ, Cullen PJ. 2011. Recent advances in retromer biology. Traffic 12:963–971. http://dx.doi.org/10.1111/j.1600-0854.2011.01201.x.
  • Siegenthaler BM, Rajendran L. 2012. Retromers in Alzheimer's disease. Neurodegener Dis 10:116–121. http://dx.doi.org/10.1159/000335910.
  • Buggia-Prevot V, Thinakaran G. 2014. Sorting the role of SORLA in Alzheimer's disease. Sci Transl Med 6:223–228. http://dx.doi.org/10.1126/scitranslmed.3008562.
  • Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang YW. 2014. Trafficking regulation of proteins in Alzheimer's disease. Mol Neurodegener 9:6. http://dx.doi.org/10.1186/1750-1326-9-6.
  • Schmidt V, Sporbert A, Rohe M, Reimer T, Rehm A, Andersen OM, Willnow TE. 2007. SorLA/LR11 regulates processing of amyloid precursor protein via interaction with adaptors GGA and PACS-1. J Biol Chem 282:32956–32964. http://dx.doi.org/10.1074/jbc.M705073200.
  • Burgert T, Schmidt V, Caglayan S, Lin F, Fuchtbauer A, Fuchtbauer EM, Nykjaer A, Carlo AS, Willnow TE. 2013. SORLA-dependent and -independent functions for PACS1 in control of amyloidogenic processes. Mol Cell Biol 33:4308–4320. http://dx.doi.org/10.1128/MCB.00628-13.
  • Okada H, Zhang W, Peterhoff C, Hwang JC, Nixon RA, Ryu SH, Kim TW. 2010. Proteomic identification of sorting nexin 6 as a negative regulator of BACE1-mediated APP processing. FASEB J 24:2783–2794. http://dx.doi.org/10.1096/fj.09-146357.
  • Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V, Rosner MR, Selkoe DJ. 2000. Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulin-degrading enzyme. J Neurosci 20:1657–1665.
  • Simons K, Ehehalt R. 2002. Cholesterol, lipid rafts, and disease. J Clin Investig 110:597–603. http://dx.doi.org/10.1172/JCI16390.
  • Jacobson K, Mouritsen OG, Anderson RG. 2007. Lipid rafts: at a crossroad between cell biology and physics. Nat Cell Biol 9:7–14. http://dx.doi.org/10.1038/ncb0107-7.
  • Lingwood D, Simons K. 2010. Lipid rafts as a membrane-organizing principle. Science 327:46–50. http://dx.doi.org/10.1126/science.1174621.
  • Riddell DR, Christie G, Hussain I, Dingwall C. 2001. Compartmentalization of beta-secretase (Asp2) into low-buoyant density, noncaveolar lipid rafts. Curr Biol 11:1288–1293. http://dx.doi.org/10.1016/S0960-9822(01)00394-3.
  • Vetrivel KS, Cheng H, Kim SH, Chen Y, Barnes NY, Parent AT, Sisodia SS, Thinakaran G. 2005. Spatial segregation of gamma-secretase and substrates in distinct membrane domains. J Biol Chem 280:25892–25900. http://dx.doi.org/10.1074/jbc.M503570200.
  • Lee SJ, Liyanage U, Bickel PE, Xia W, Lansbury PT, Jr, Kosik KS. 1998. A detergent-insoluble membrane compartment contains A beta in vivo. Nat Med 4:730–734. http://dx.doi.org/10.1038/nm0698-730.
  • Vetrivel KS, Thinakaran G. 2010. Membrane rafts in Alzheimer's disease beta-amyloid production. Biochim Biophys Acta 1801:860–867. http://dx.doi.org/10.1016/j.bbalip.2010.03.007.
  • Wirths O, Multhaup G, Bayer TA. 2004. A modified beta-amyloid hypothesis: intraneuronal accumulation of the beta-amyloid peptide–the first step of a fatal cascade. J Neurochem 91:513–520. http://dx.doi.org/10.1111/j.1471-4159.2004.02737.x.
  • Li Y, Xu C, Schubert D. 1999. The up-regulation of endosomal-lysosomal components in amyloid beta-resistant cells. J Neurochem 73:1477–1482.
  • Zhou G, Roizman B. 2002. Cation-independent mannose 6-phosphate receptor blocks apoptosis induced by herpes simplex virus 1 mutants lacking glycoprotein D and is likely the target of antiapoptotic activity of the glycoprotein. J Virol 76:6197–6204. http://dx.doi.org/10.1128/JVI.76.12.6197-6204.2002.
  • Weng YS, Kuo WW, Lin YM, Kuo CH, Tzang BS, Tsai FJ, Tsai CH, Lin JA, Hsieh DJ, Huang CY. 2013. Danshen mediates through estrogen receptors to activate Akt and inhibit apoptosis effect of Leu27IGF-II-induced IGF-II receptor signaling activation in cardiomyoblasts. Food Chem Toxicol 56:28–39. http://dx.doi.org/10.1016/j.fct.2013.01.008.
  • Gil J, Almeida S, Oliveira CR, Rego AC. 2003. Cytosolic and mitochondrial ROS in staurosporine-induced retinal cell apoptosis. Free Radic Biol Med 35:1500–1514. http://dx.doi.org/10.1016/j.freeradbiomed.2003.08.022.
  • Pong K, Doctrow SR, Huffman K, Adinolfi CA, Baudry M. 2001. Attenuation of staurosporine-induced apoptosis, oxidative stress, and mitochondrial dysfunction by synthetic superoxide dismutase and catalase mimetics, in cultured cortical neurons. Exp Neurol 171:84–97. http://dx.doi.org/10.1006/exnr.2001.7747.
  • Kruman I, Guo Q, Mattson MP. 1998. Calcium and reactive oxygen species mediate staurosporine-induced mitochondrial dysfunction and apoptosis in PC12 cells. J Neurosci Res 51:293–308.
  • Butterfield DA, Boyd-Kimball D. 2004. Amyloid beta-peptide(1-42) contributes to the oxidative stress and neurodegeneration found in Alzheimer disease brain. Brain Pathol 14:426–432. http://dx.doi.org/10.1111/j.1750-3639.2004.tb00087.x.
  • Cenini G, Cecchi C, Pensalfini A, Bonini SA, Ferrari-Toninelli G, Liguri G, Memo M, Uberti D. 2010. Generation of reactive oxygen species by beta amyloid fibrils and oligomers involves different intra/extracellular pathways. Amino Acids 38:1101–1106. http://dx.doi.org/10.1007/s00726-009-0319-7.
  • Araki W, Yuasa K, Takeda S, Takeda K, Shirotani K, Takahashi K, Tabira T. 2001. Pro-apoptotic effect of presenilin 2 (PS2) overexpression is associated with down-regulation of Bcl-2 in cultured neurons. J Neurochem 79:1161–1168. http://dx.doi.org/10.1046/j.1471-4159.2001.00638.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.