52
Views
26
CrossRef citations to date
0
Altmetric
Article

Shp2 in Forebrain Neurons Regulates Synaptic Plasticity, Locomotion, and Memory Formation in Mice

, , , , , , , , , , , & ORCID Icon show all
Pages 1557-1572 | Received 06 Nov 2014, Accepted 17 Feb 2015, Published online: 20 Mar 2023

REFERENCES

  • Neel BG, Gu H, Pao L. 2003. The ‘Shp'ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem Sci 28:284–293. http://dx.doi.org/10.1016/S0968-0004(03)00091-4.
  • Matozaki T, Murata Y, Saito Y, Okazawa H, Ohnishi H. 2009. Protein tyrosine phosphatase SHP-2: a proto-oncogene product that promotes Ras activation. Cancer Sci 100:1786–1793. http://dx.doi.org/10.1111/j.1349-7006.2009.01257.x.
  • Perkins LA, Johnson MR, Melnick MB, Perrimon N. 1996. The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathways in Drosophila. Dev Biol 180:63–81. http://dx.doi.org/10.1006/dbio.1996.0285.
  • Tang TL, Freeman RM, Jr, O'Reilly AM, Neel BG, Sokol SY. 1995. The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell 80:473–483. http://dx.doi.org/10.1016/0092-8674(95)90498-0.
  • Saxton TM, Henkemeyer M, Gasca S, Shen R, Rossi DJ, Shalaby F, Feng GS, Pawson T. 1997. Abnormal mesoderm patterning in mouse embryos mutant for the SH2 tyrosine phosphatase Shp-2. EMBO J 16:2352–2364. http://dx.doi.org/10.1093/emboj/16.9.2352.
  • Tartaglia M, Gelb BD, Zenker M. 2011. Noonan syndrome and clinically related disorders. Best Pract Res Clin Endocrinol Metab 25:161–179. http://dx.doi.org/10.1016/j.beem.2010.09.002.
  • Sarkozy A, Digilio MC, Dallapiccola B. 2008. Leopard syndrome. Orphanet J Rare Dis 3:13. http://dx.doi.org/10.1186/1750-1172-3-13.
  • Gauthier AS, Furstoss O, Araki T, Chan R, Neel BG, Kaplan DR, Miller FD. 2007. Control of CNS cell-fate decisions by SHP-2 and its dysregulation in Noonan syndrome. Neuron 54:245–262. http://dx.doi.org/10.1016/j.neuron.2007.03.027.
  • Zhang EE, Chapeau E, Hagihara K, Feng GS. 2004. Neuronal Shp2 tyrosine phosphatase controls energy balance and metabolism. Proc Natl Acad Sci U S A 101:16064–16069. http://dx.doi.org/10.1073/pnas.0405041101.
  • Krajewska M, Banares S, Zhang EE, Huang X, Scadeng M, Jhala US, Feng GS, Krajewski S. 2008. Development of diabesity in mice with neuronal deletion of Shp2 tyrosine phosphatase. Am J Pathol 172:1312–1324. http://dx.doi.org/10.2353/ajpath.2008.070594.
  • Fornaro M, Burch PM, Yang W, Zhang L, Hamilton CE, Kim JH, Neel BG, Bennett AM. 2006. SHP-2 activates signaling of the nuclear factor of activated T cells to promote skeletal muscle growth. J Cell Biol 175:87–97. http://dx.doi.org/10.1083/jcb.200602029.
  • Minichiello L, Korte M, Wolfer D, Kuhn R, Unsicker K, Cestari V, Rossi-Arnaud C, Lipp HP, Bonhoeffer T, Klein R. 1999. Essential role for TrkB receptors in hippocampus-mediated learning. Neuron 24:401–414. http://dx.doi.org/10.1016/S0896-6273(00)80853-3.
  • Nakazawa T, Komai S, Watabe AM, Kiyama Y, Fukaya M, Arima-Yoshida F, Horai R, Sudo K, Ebine K, Delawary M, Goto J, Umemori H, Tezuka T, Iwakura Y, Watanabe M, Yamamoto T, Manabe T. 2006. NR2B tyrosine phosphorylation modulates fear learning as well as amygdaloid synaptic plasticity. EMBO J 25:2867–2877. http://dx.doi.org/10.1038/sj.emboj.7601156.
  • Obata K, Kojima N, Nishiye H, Inoue H, Shirao T, Fujita SC, Uchizono K. 1987. Four synaptic vesicle-specific proteins: identification by monoclonal antibodies and distribution in the nervous tissue and the adrenal medulla. Brain Res 404:169–179. http://dx.doi.org/10.1016/0006-8993(87)91368-0.
  • Huttner WB, Schiebler W, Greengard P, De Camilli P. 1983. Synapsin I (protein I), a nerve terminal-specific phosphoprotein. III. Its association with synaptic vesicles studied in a highly purified synaptic vesicle preparation. J Cell Biol 96:1374–1388.
  • Ohnishi H, Murata T, Kusakari S, Hayashi Y, Takao K, Maruyama T, Ago Y, Koda K, Jin FJ, Okawa K, Oldenborg PA, Okazawa H, Murata Y, Furuya N, Matsuda T, Miyakawa T, Matozaki T. 2010. Stress-evoked tyrosine phosphorylation of signal regulatory protein alpha regulates behavioral immobility in the forced swim test. J Neurosci 30:10472–10483. http://dx.doi.org/10.1523/JNEUROSCI.0257-10.2010.
  • Miyakawa T, Yamada M, Duttaroy A, Wess J. 2001. Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21:5239–5250.
  • Miyakawa T, Leiter LM, Gerber DJ, Gainetdinov RR, Sotnikova TD, Zeng H, Caron MG, Tonegawa S. 2003. Conditional calcineurin knockout mice exhibit multiple abnormal behaviors related to schizophrenia. Proc Natl Acad Sci U S A 100:8987–8992. http://dx.doi.org/10.1073/pnas.1432926100.
  • Morishima Y, Miyakawa T, Furuyashiki T, Tanaka Y, Mizuma H, Nakanishi S. 2005. Enhanced cocaine responsiveness and impaired motor coordination in metabotropic glutamate receptor subtype 2 knockout mice. Proc Natl Acad Sci U S A 102:4170–4175. http://dx.doi.org/10.1073/pnas.0500914102.
  • Shibata M, Yamasaki N, Miyakawa T, Kalaria RN, Fujita Y, Ohtani R, Ihara M, Takahashi R, Tomimoto H. 2007. Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke 38:2826–2832. http://dx.doi.org/10.1161/STROKEAHA.107.490151.
  • Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A. 2005. Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472. http://dx.doi.org/10.1126/science.1108609.
  • Nadler JJ, Moy SS, Dold G, Trang D, Simmons N, Perez A, Young NB, Barbaro RP, Piven J, Magnuson TR, Crawley JN. 2004. Automated apparatus for quantitation of social approach behaviors in mice. Genes Brain Behav 3:303–314. http://dx.doi.org/10.1111/j.1601-183X.2004.00071.x.
  • Murata T, Ohnishi H, Okazawa H, Murata Y, Kusakari S, Hayashi Y, Miyashita M, Itoh H, Oldenborg PA, Furuya N, Matozaki T. 2006. CD47 promotes neuronal development through Src- and FRG/Vav2-mediated activation of Rac and Cdc42. J Neurosci 26:12397–12407. http://dx.doi.org/10.1523/JNEUROSCI.3981-06.2006.
  • Maruyama T, Kusakari S, Sato-Hashimoto M, Hayashi Y, Kotani T, Murata Y, Okazawa H, Oldenborg PA, Kishi S, Matozaki T, Ohnishi H. 2012. Hypothermia-induced tyrosine phosphorylation of SIRPα in the brain. J Neurochem 121:891–902. http://dx.doi.org/10.1111/j.1471-4159.2012.07748.x.
  • Yamamoto T, Miyoshi H, Yamamoto N, Yamamoto N, Inoue J, Tsunetsugu-Yokota Y. 2006. Lentivirus vectors expressing short hairpin RNAs against the U3-overlapping region of HIV nef inhibit HIV replication and infectivity in primary macrophages. Blood 108:3305–3312. http://dx.doi.org/10.1182/blood-2006-04-014829.
  • Paxinos G, Franklin KBJ. 1997. The mouse brain in stereotaxic coordinates. Academic Press, San Diego, CA.
  • Ago Y, Araki R, Tanaka T, Sasaga A, Nishiyama S, Takuma K, Matsuda T. 2013. Role of social encounter-induced activation of prefrontal serotonergic systems in the abnormal behaviors of isolation-reared mice. Neuropsychopharmacology 38:1535–1547. http://dx.doi.org/10.1038/npp.2013.52.
  • Ishihama T, Ago Y, Shintani N, Hashimoto H, Baba A, Takuma K, Matsuda T. 2010. Environmental factors during early developmental period influence psychobehavioral abnormalities in adult PACAP-deficient mice. Behav Brain Res 209:274–280. http://dx.doi.org/10.1016/j.bbr.2010.02.009.
  • Cryan JF, Mombereau C, Vassout A. 2005. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev 29:571–625. http://dx.doi.org/10.1016/j.neubiorev.2005.03.009.
  • Brooks SP, Dunnett SB. 2009. Tests to assess motor phenotype in mice: a user's guide. Nat Rev Neurosci 10:519–529. http://dx.doi.org/10.1038/nrn2652.
  • Bourin M, Hascoet M. 2003. The mouse light/dark box test. Eur J Pharmacol 463:55–65. http://dx.doi.org/10.1016/S0014-2999(03)01274-3.
  • Porsolt RD, Le Pichon M, Jalfre M. 1977. Depression: a new animal model sensitive to antidepressant treatments. Nature 266:730–732. http://dx.doi.org/10.1038/266730a0.
  • Koch M, Schnitzler HU. 1997. The acoustic startle response in rats—circuits mediating evocation, inhibition and potentiation. Behav Brain Res 89:35–49. http://dx.doi.org/10.1016/S0166-4328(97)02296-1.
  • Braff DL, Geyer MA. 1990. Sensorimotor gating and schizophrenia. Human and animal model studies. Arch Gen Psychiatry 47:181–188. http://dx.doi.org/10.1001/archpsyc.1990.01810140081011.
  • Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, Piven J, Crawley JN. 2004. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 3:287–302. http://dx.doi.org/10.1111/j.1601-1848.2004.00076.x.
  • Walsh RN, Cummins RA. 1976. The open-field test: a critical review. Psychol Bull 83:482–504. http://dx.doi.org/10.1037/0033-2909.83.3.482.
  • Viggiano D. 2008. The hyperactive syndrome: metanalysis of genetic alterations, pharmacological treatments and brain lesions which increase locomotor activity. Behav Brain Res 194:1–14. http://dx.doi.org/10.1016/j.bbr.2008.06.033.
  • Kadam SD, Smith-Hicks CL, Smith DR, Worley PF, Comi AM. 2010. Functional integration of new neurons into hippocampal networks and poststroke comorbidities following neonatal stroke in mice. Epilepsy Behav 18:344–357. http://dx.doi.org/10.1016/j.yebeh.2010.05.006.
  • Levine JB, Youngs RM, MacDonald ML, Chu M, Leeder AD, Berthiaume F, Konradi C. 2007. Isolation rearing and hyperlocomotion are associated with reduced immediate early gene expression levels in the medial prefrontal cortex. Neuroscience 145:42–55. http://dx.doi.org/10.1016/j.neuroscience.2006.11.063.
  • Liston C, Malter Cohen M, Teslovich T, Levenson D, Casey BJ. 2011. Atypical prefrontal connectivity in attention-deficit/hyperactivity disorder: pathway to disease or pathological end point? Biol Psychiatry 69:1168–1177. http://dx.doi.org/10.1016/j.biopsych.2011.03.022.
  • Lyons MR, West AE. 2011. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 94:259–295. http://dx.doi.org/10.1016/j.pneurobio.2011.05.003.
  • Greer PL, Greenberg ME. 2008. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59:846–860. http://dx.doi.org/10.1016/j.neuron.2008.09.002.
  • Buzsáki G, Anastassiou CA, Koch C. 2012. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420. http://dx.doi.org/10.1038/nrn3241.
  • Edouard T, Combier JP, Nédélec A, Bel-Vialar S, Métrich M, Conte-Auriol F, Lyonnet S, Parfait B, Tauber M, Salles JP, Lezoualc'h F, Yart A, Raynal P. 2010. Functional effects of PTPN11 (SHP2) mutations causing LEOPARD syndrome on epidermal growth factor-induced phosphoinositide 3-kinase/AKT/glycogen synthase kinase 3β signaling. Mol Cell Biol 30:2498–2507. http://dx.doi.org/10.1128/MCB.00646-09.
  • Hardingham GE, Arnold FJ, Bading H. 2001. A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nat Neurosci 4:565–566. http://dx.doi.org/10.1038/88380.
  • Wiegert JS, Bading H. 2011. Activity-dependent calcium signaling and ERK-MAP kinases in neurons: a link to structural plasticity of the nucleus and gene transcription regulation. Cell Calcium 49:296–305. http://dx.doi.org/10.1016/j.ceca.2010.11.009.
  • Pereira DB, Carvalho AP, Duarte CB. 2002. Non-specific effects of the MEK inhibitors PD098,059 and U0126 on glutamate release from hippocampal synaptosomes. Neuropharmacology 42:9–19. http://dx.doi.org/10.1016/S0028-3908(01)00162-9.
  • Fioravante D, Regehr WG. 2011. Short-term forms of presynaptic plasticity. Curr Opin Neurobiol 21:269–274. http://dx.doi.org/10.1016/j.conb.2011.02.003.
  • Dobrunz LE, Stevens CF. 1997. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18:995–1008. http://dx.doi.org/10.1016/S0896-6273(00)80338-4.
  • Malenka RC. 1994. Synaptic plasticity in the hippocampus: LTP and LTD. Cell 78:535–538. http://dx.doi.org/10.1016/0092-8674(94)90517-7.
  • D'Hooge R, De Deyn PP. 2001. Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90. http://dx.doi.org/10.1016/S0165-0173(01)00067-4.
  • Gavériaux-Ruff C, Kieffer BL. 2007. Conditional gene targeting in the mouse nervous system: Insights into brain function and diseases. Pharmacol Ther 113:619–634. http://dx.doi.org/10.1016/j.pharmthera.2006.12.003.
  • Monteggia LM, Luikart B, Barrot M, Theobold D, Malkovska I, Nef S, Parada LF, Nestler EJ. 2007. Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry 61:187–197. http://dx.doi.org/10.1016/j.biopsych.2006.03.021.
  • Kernie SG, Liebl DJ, Parada LF. 2000. BDNF regulates eating behavior and locomotor activity in mice. EMBO J 19:1290–1300. http://dx.doi.org/10.1093/emboj/19.6.1290.
  • Zörner B, Wolfer DP, Brandis D, Kretz O, Zacher C, Madani R, Grunwald I, Lipp HP, Klein R, Henn FA, Gass P. 2003. Forebrain-specific trkB-receptor knockout mice: behaviorally more hyperactive than “depressive.” Biol Psychiatry 54:972–982. http://dx.doi.org/10.1016/S0006-3223(03)00418-9.
  • Engel SR, Creson TK, Hao Y, Shen Y, Maeng S, Nekrasova T, Landreth GE, Manji HK, Chen G. 2009. The extracellular signal-regulated kinase pathway contributes to the control of behavioral excitement. Mol Psychiatry 14:448–461. http://dx.doi.org/10.1038/sj.mp.4002135.
  • Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W, Welzl H, Wolfer DP, Pages G, Valverde O, Marowsky A, Porrazzo A, Orban PC, Maldonado R, Ehrengruber MU, Cestari V, Lipp HP, Chapman PF, Pouyssegur J, Brambilla R. 2002. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 34:807–820. http://dx.doi.org/10.1016/S0896-6273(02)00716-X.
  • Einat H, Yuan P, Gould TD, Li J, Du J, Zhang L, Manji HK, Chen G. 2003. The role of the extracellular signal-regulated kinase signaling pathway in mood modulation. J Neurosci 23:7311–7316.
  • Viosca J, Schuhmacher AJ, Guerra C, Barco A. 2009. Germline expression of H-Ras(G12V) causes neurological deficits associated to Costello syndrome. Genes Brain Behav 8:60–71. http://dx.doi.org/10.1111/j.1601-183X.2008.00443.x.
  • Ji Y, Lu Y, Yang F, Shen W, Tang TT, Feng L, Duan S, Lu B. 2010. Acute and gradual increases in BDNF concentration elicit distinct signaling and functions in neurons. Nat Neurosci 13:302–309. http://dx.doi.org/10.1038/nn.2505.
  • Thomas GM, Huganir RL. 2004. MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5:173–183. http://dx.doi.org/10.1038/nrn1346.
  • Rusanescu G, Yang W, Bai A, Neel BG, Feig LA. 2005. Tyrosine phosphatase SHP-2 is a mediator of activity-dependent neuronal excitotoxicity. EMBO J 24:305–314. http://dx.doi.org/10.1038/sj.emboj.7600522.
  • Vara H, Onofri F, Benfenati F, Sassoe-Pognetto M, Giustetto M. 2009. ERK activation in axonal varicosities modulates presynaptic plasticity in the CA3 region of the hippocampus through synapsin I. Proc Natl Acad Sci U S A 106:9872–9877. http://dx.doi.org/10.1073/pnas.0900077106.
  • Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M. 2002. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36:121–137. http://dx.doi.org/10.1016/S0896-6273(02)00942-X.
  • Pagani MR, Oishi K, Gelb BD, Zhong Y. 2009. The phosphatase SHP2 regulates the spacing effect for long-term memory induction. Cell 139:186–198. http://dx.doi.org/10.1016/j.cell.2009.08.033.
  • Nadel L, Hardt O. 2011. Update on memory systems and processes. Neuropsychopharmacology 36:251–273. http://dx.doi.org/10.1038/npp.2010.169.
  • Holt W, Maren S. 1999. Muscimol inactivation of the dorsal hippocampus impairs contextual retrieval of fear memory. J Neurosci 19:9054–9062.
  • Riedel G, Micheau J, Lam AG, Roloff EL, Martin SJ, Bridge H, de Hoz L, Poeschel B, McCulloch J, Morris RG. 1999. Reversible neural inactivation reveals hippocampal participation in several memory processes. Nat Neurosci 2:898–905. http://dx.doi.org/10.1038/13202.
  • Lee YS, Ehninger D, Zhou M, Oh JY, Kang M, Kwak C, Ryu HH, Butz D, Araki T, Cai Y, Balaji J, Sano Y, Nam CI, Kim HK, Kaang BK, Burger C, Neel BG, Silva AJ. 2014. Mechanism and treatment for learning and memory deficits in mouse models of Noonan syndrome. Nat Neurosci 17:1736–1743. http://dx.doi.org/10.1038/nn.3863.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.